The paper describes an estimation and identification procedure that allows to reconstruct the inertial parameters of a rigid load attached to the end-effector of an industrial manipulator. In particular, the proposed method adopts a multirate quaternion-based Kalman filter, fusing measurements obtained from robot kinematics and inertial sensors at possibly different sampling frequencies, to estimate linear accelerations and angular velocities/accelerations of the load. Then, a recursive total least-squares (RTLS) process is executed to identify the load parameters. Both steps of the estimation and identification procedure are performed in real-time, without the need for offline post-processing of measured data.
Real-Time Identification of Robot Payload using a Multirate Quaternion-based Kalman Filter and Recursive Total Least-Squares
Farsoni, SaverioPrimo
;Secchi, Cristian;Bonfe, MarcelloUltimo
2018
Abstract
The paper describes an estimation and identification procedure that allows to reconstruct the inertial parameters of a rigid load attached to the end-effector of an industrial manipulator. In particular, the proposed method adopts a multirate quaternion-based Kalman filter, fusing measurements obtained from robot kinematics and inertial sensors at possibly different sampling frequencies, to estimate linear accelerations and angular velocities/accelerations of the load. Then, a recursive total least-squares (RTLS) process is executed to identify the load parameters. Both steps of the estimation and identification procedure are performed in real-time, without the need for offline post-processing of measured data.File | Dimensione | Formato | |
---|---|---|---|
icra2018.pdf
solo gestori archivio
Descrizione: Pre-print
Tipologia:
Pre-print
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
1.33 MB
Formato
Adobe PDF
|
1.33 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
ICRA.2018.8461167 (1).pdf
solo gestori archivio
Descrizione: Full text editoriale
Tipologia:
Full text (versione editoriale)
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
2.47 MB
Formato
Adobe PDF
|
2.47 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.