Duchenne muscular dystrophy (DMD) is a severe X-linked disease characterized by progressive muscle weakness. It is caused by a variety of DMD gene pathogenic variations (large deletions or duplications, and small mutations) which leads to the absence or to a decreased amount of dystrophin protein. The allelic Becker muscular dystrophy is characterized by later onset and milder muscle involvement, and other rarer phenotypes might also be associated, such as dilated cardiomyopathy, cognitive impairment, and other neurological signs. Following the identification of the genetic cause and the disease pathophysiology, innovative personalized therapies emerged. These can be categorized into two main groups: (1) therapies aiming at the restoration of dystrophin at the sarcolemma; (2) therapeutics dealing with secondary consequences of dystrophin deficiency. In this review we provide an overview about DMD genotype-phenotype correlation, and on main approaches to restore dystrophin as stop codon read-through, exon skipping, vector-mediated gene therapy, and genome-editing strategies, some of these are based on approved orphan drugs. Finally, we present the clinical potential of novel strategies combining therapies to correct the genetic defect and other approaches, targeting secondary downstream pathological cascade due to dystrophin deficiency. (C) 2021 Elsevier B.V. All rights reserved.

The DMD gene and therapeutic approaches to restore dystrophin

Fortunato, Fernanda
Primo
;
Farnè, Marianna
Secondo
;
Ferlini, Alessandra
Ultimo
2021

Abstract

Duchenne muscular dystrophy (DMD) is a severe X-linked disease characterized by progressive muscle weakness. It is caused by a variety of DMD gene pathogenic variations (large deletions or duplications, and small mutations) which leads to the absence or to a decreased amount of dystrophin protein. The allelic Becker muscular dystrophy is characterized by later onset and milder muscle involvement, and other rarer phenotypes might also be associated, such as dilated cardiomyopathy, cognitive impairment, and other neurological signs. Following the identification of the genetic cause and the disease pathophysiology, innovative personalized therapies emerged. These can be categorized into two main groups: (1) therapies aiming at the restoration of dystrophin at the sarcolemma; (2) therapeutics dealing with secondary consequences of dystrophin deficiency. In this review we provide an overview about DMD genotype-phenotype correlation, and on main approaches to restore dystrophin as stop codon read-through, exon skipping, vector-mediated gene therapy, and genome-editing strategies, some of these are based on approved orphan drugs. Finally, we present the clinical potential of novel strategies combining therapies to correct the genetic defect and other approaches, targeting secondary downstream pathological cascade due to dystrophin deficiency. (C) 2021 Elsevier B.V. All rights reserved.
2021
Fortunato, Fernanda; Farnè, Marianna; Ferlini, Alessandra
File in questo prodotto:
File Dimensione Formato  
1-s2.0-S0960896621006088-main.pdf

solo gestori archivio

Descrizione: Full text editoriale
Tipologia: Full text (versione editoriale)
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 948.07 kB
Formato Adobe PDF
948.07 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/2532192
Citazioni
  • ???jsp.display-item.citation.pmc??? 17
  • Scopus 34
  • ???jsp.display-item.citation.isi??? 32
social impact