The paper proposes a procedure to provide a complete and physically-consistent estimation of mass, center of mass and inertia tensor of the payload attached to the end-effector of an industrial manipulator equipped with a force/torque sensor. The procedure involves the generation of an artificial potential field that allows the proper excitation of the payload inertial parameters while avoiding static and dynamic obstacles, thus ensuring a safe and collaborative scenario. The adopted identification algorithm consists in the solution of a constrained non-linear optimization problem that guarantees the physical consistency of the inertial parameters. The proposed approach has been validated by simulating a typical collaborative workcell where a Franka-Emika Panda robot performs the procedure while avoiding dynamic obstacles.
Complete and Consistent Payload Identification During Human-Robot Collaboration: A Safety-Oriented Procedure
Farsoni S.
Co-primo
;Bonfe' M.Co-primo
2022
Abstract
The paper proposes a procedure to provide a complete and physically-consistent estimation of mass, center of mass and inertia tensor of the payload attached to the end-effector of an industrial manipulator equipped with a force/torque sensor. The procedure involves the generation of an artificial potential field that allows the proper excitation of the payload inertial parameters while avoiding static and dynamic obstacles, thus ensuring a safe and collaborative scenario. The adopted identification algorithm consists in the solution of a constrained non-linear optimization problem that guarantees the physical consistency of the inertial parameters. The proposed approach has been validated by simulating a typical collaborative workcell where a Franka-Emika Panda robot performs the procedure while avoiding dynamic obstacles.File | Dimensione | Formato | |
---|---|---|---|
Farsoni_HFR_2021.pdf
solo gestori archivio
Descrizione: Full text editoriale
Tipologia:
Full text (versione editoriale)
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
438.09 kB
Formato
Adobe PDF
|
438.09 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.