In this paper we present a novel strategy for motion planning of autonomous robotic arms in Robotic Minimally Invasive Surgery (R-MIS). We consider a scenario where several laparoscopic tools must move and coordinate in a shared environment. The motion planner is based on a Model Predictive Controller (MPC) that predicts the future behavior of the robots and allows to move them avoiding collisions between the tools and satisfying the velocity limitations. In order to avoid the local minima that could affect the MPC, we propose a strategy for driving it through a sequence of waypoints. The proposed control strategy is validated on a realistic surgical scenario.

Integrating model predictive control and dynamic waypoints generation for motion planning in surgical scenario

Sozzi A.
Secondo
;
Bonfe' M.
Penultimo
;
Secchi C.
Ultimo
2020

Abstract

In this paper we present a novel strategy for motion planning of autonomous robotic arms in Robotic Minimally Invasive Surgery (R-MIS). We consider a scenario where several laparoscopic tools must move and coordinate in a shared environment. The motion planner is based on a Model Predictive Controller (MPC) that predicts the future behavior of the robots and allows to move them avoiding collisions between the tools and satisfying the velocity limitations. In order to avoid the local minima that could affect the MPC, we propose a strategy for driving it through a sequence of waypoints. The proposed control strategy is validated on a realistic surgical scenario.
2020
9781728162126
Robotic surgery; Motion Planning; Model Predictive Control
File in questo prodotto:
File Dimensione Formato  
IROS2020_MPC.pdf

accesso aperto

Descrizione: Pre-print
Tipologia: Pre-print
Licenza: PUBBLICO - Pubblico con Copyright
Dimensione 3.94 MB
Formato Adobe PDF
3.94 MB Adobe PDF Visualizza/Apri
Integrating_Model_Predictive_Control_and_Dynamic_Waypoints.pdf

solo gestori archivio

Descrizione: Full text editoriale
Tipologia: Full text (versione editoriale)
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 4.64 MB
Formato Adobe PDF
4.64 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/2470645
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 10
  • ???jsp.display-item.citation.isi??? 9
social impact