Probabilistic logic programming is an effective formalism for encoding problems characterized by uncertainty. Some of these problems may require the optimization of probability values subject to constraints among probability distributions of random variables. Here, we introduce a new class of probabilistic logic programs, namely probabilistic optimizable logic programs, and we provide an effective algorithm to find the best assignment to probabilities of random variables, such that a set of constraints is satisfied and an objective function is optimized.

Optimizing Probabilities in Probabilistic Logic Programs

Azzolini D.;Riguzzi F.
2021

Abstract

Probabilistic logic programming is an effective formalism for encoding problems characterized by uncertainty. Some of these problems may require the optimization of probability values subject to constraints among probability distributions of random variables. Here, we introduce a new class of probabilistic logic programs, namely probabilistic optimizable logic programs, and we provide an effective algorithm to find the best assignment to probabilities of random variables, such that a set of constraints is satisfied and an objective function is optimized.
2021
Constraints; Optimization; Probabilistic logic programming
File in questo prodotto:
File Dimensione Formato  
2108.03095.pdf

accesso aperto

Descrizione: Pre-print
Tipologia: Pre-print
Licenza: Creative commons
Dimensione 170.23 kB
Formato Adobe PDF
170.23 kB Adobe PDF Visualizza/Apri
03_tplp_2021.pdf

solo gestori archivio

Descrizione: Full text editoriale
Tipologia: Full text (versione editoriale)
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 451.44 kB
Formato Adobe PDF
451.44 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/2467216
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 3
social impact