Probabilistic logic programming is an effective formalism for encoding problems characterized by uncertainty. Some of these problems may require the optimization of probability values subject to constraints among probability distributions of random variables. Here, we introduce a new class of probabilistic logic programs, namely probabilistic optimizable logic programs, and we provide an effective algorithm to find the best assignment to probabilities of random variables, such that a set of constraints is satisfied and an objective function is optimized.
Optimizing Probabilities in Probabilistic Logic Programs
Azzolini D.;Riguzzi F.
2021
Abstract
Probabilistic logic programming is an effective formalism for encoding problems characterized by uncertainty. Some of these problems may require the optimization of probability values subject to constraints among probability distributions of random variables. Here, we introduce a new class of probabilistic logic programs, namely probabilistic optimizable logic programs, and we provide an effective algorithm to find the best assignment to probabilities of random variables, such that a set of constraints is satisfied and an objective function is optimized.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
2108.03095.pdf
accesso aperto
Descrizione: Pre-print
Tipologia:
Pre-print
Licenza:
Creative commons
Dimensione
170.23 kB
Formato
Adobe PDF
|
170.23 kB | Adobe PDF | Visualizza/Apri |
03_tplp_2021.pdf
solo gestori archivio
Descrizione: Full text editoriale
Tipologia:
Full text (versione editoriale)
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
451.44 kB
Formato
Adobe PDF
|
451.44 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.