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Abstract

Probabilistic Logic Programming is an effective formalism for encoding problems characterized by uncer-

tainty. Some of these problems may require the optimization of probability values subject to constraints

among probability distributions of random variables. Here, we introduce a new class of probabilistic logic

programs, namely Probabilistic Optimizable Logic Programs, and we provide an effective algorithm to find

the best assignment to probabilities of random variables, such that a set of constraints is satisfied and an

objective function is optimized. This paper is under consideration for acceptance in Theory and Practice of

Logic Programming.

KEYWORDS: Probabilistic Logic Programming, Optimization, Constraints

1 Introduction

Uncertainty on the data is ubiquitous and pervades almost all domains, such as social networks

(uncertainty on the relations), power networks (uncertainty on the components), and road net-

works (uncertain about the traffic). Many real-world applications that can be modelled with

random variables require the solution of optimization problems. In particular, considering the

domains listed above, in a social network or in a collaboration network we may want to optimize

the probability of targeting some people (or a group of them) during a marketing campaign, but

we may be uncertain whether the people (or group of people) know each other, so we need to

introduce random variables to model the data. In road networks we may want to minimize the

probability of encountering a traffic jam, but typically we are unsure about the traffic distribution,

so probabilities are needed. In power networks we can, for example, optimize the positioning of

several electronic components to reduce the probability of a system fault, given that these com-

ponents have a certain tolerance and a performance degradation after several running hours.

Furthermore, uncertainty is often an intrinsic characteristic of the data itself (collected by faulty

sources, incomplete, . . . ), so probabilities are necessary. The same type of task can as well be

of interest for other, more theoretical, domains; just to name a few: in Markov network we can

set the probability of the possible transitions to optimize the chances of reaching a certain final

http://arxiv.org/abs/2108.03095v1
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state, in probabilistic context-free grammars we may be interested in finding the probability of

the various components such that the classification of a sentence does not change.

Probabilistic Logic Programming (De Raedt et al. 2008; Riguzzi 2018) is an extension of Logic

Programming that allows to encode probabilistic models with a rich language. In this paper, we

address the problem of optimizing an objective function by tuning the probabilities of probabilis-

tic logic programs subject to constraints on probabilities of facts and queries.

To solve the aforementioned task, we extend the PITA reasoner (Riguzzi and Swift 2010) to

allow the definition of optimizable facts, i.e., facts whose probabilities can be set in order to opti-

mize (minimize or maximize) an objective function subject to constraints. Constraints can be on

both the query and the optimizable facts. We introduce the definition of Probabilistic Optimiza-

tion Logic Program and Probabilistic Optimizable Problem, and provide an algorithm to solve it.

This task can be considered as constrained parameter learning.

By extending the library PITA, we can express models that retain the full LPAD expressive

power, while adding new optimizable facts: in this way, we do not need to rewrite a specialized

system to solve the problem, we just need to build upon the previous developed work.

The paper is organized as follows: Section 2 analyzes the related works, Section 3 presents

the basic definitions regarding Probabilistic Logic Programming, and Section 4 introduces the

definition of the task we consider, together with an algorithm to solve it. Section 5 presents some

empirical results and Section 6 concludes the paper.

2 Related Works

A huge part of related works focuses on parameter learning, i.e., learning the parameters of a

probabilistic logic program in a supervised manner, starting from a set of examples. However,

explicit constraints on probabilities of probabilistic facts are usually not considered. Here, we

learn the parameter (probabilities) of the program’s facts starting from a set of constraints, so

our algorithm does not need a training set, since it can be classified as an algorithm for solving

constrained optimization problems.

One of the first approaches to solve the parameter learning task can be found in PRISM (Sato 1995):

the goal is to find the maximum likelihood parameters of special atoms, called msw atoms, that

are not present in the dataset. To learn the parameters, they propose a naive implementation of the

EM algorithm, later improved in (Sato and Kameya 2001). EM is also used in (Bellodi and Riguzzi 2012)

to learn the parameters of Logic Programs with Annotated Disjunctions (LPADs) (Vennekens et al. 2004)

represented as Binary Decision Diagrams (BDDs). Another technique is presented in ProbLog2 (Fierens et al. 2015)

that includes the algorithm LFIProbLog (Gutmann et al. 2011), where parameters of ProbLog

programs are learned from partial interpretations.

Parameter learning using gradient-based methods is applied in (Gutmann et al. 2008), where

derivatives are computed directly on the BDD representation of the program. Here, we use

gradient-based methods as well (see Section 5), but we do not compute gradients directly on the

BDD. Rather, we obtain the equation represented by the BDD and then use this equation (after

simplification) in all the calculations. In this way, we traverse the BDD only once. A related idea

is introduced in (Kimmig et al. 2011) where the authors present aProbLog, an extension of the

programming language ProbLog (De Raedt et al. 2007). It allows to solve different tasks, among

them, the sensitivity analysis, i.e., see how a change in the parameters affects the probability of

a query. However, they cite the task in passing, and they do not consider further constraints on

the probability of the variables. The same problem is discussed in (Orsini et al. 2017). Other ap-
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proaches, such as DTProblog (Van den Broeck et al. 2010), extend probabilistic logic programs

with Boolean decision variables. The goal is to find the optimal set of these variables to maxi-

mize the overall expected utility. As happens for previously described approaches, no constraints

are considered.

Another related solution is presented in (Latour et al. 2017), where the authors introduce an

algorithm to combine Probabilistic (Logic) Programming and Constraint Programming to solve

decision-theoretic tasks: as in that paper, we use a compact representation of the probabilistic

logic program (they use SDD, we use BDD), and extend an already existing tool (they extend

ProbLog, we extend PITA). Differently, they restrict the type of constraints involved (linear con-

straints over sum of Boolean decision variables) and they do not consider the computation of

optimal probability values.

A research area that combines probability and constraints is stochastic constraint programming

(SCP) (Walsh 2002). SCP programs are composed of two types of variables: decision variables

that can be set, and stochastic variables that follow a probability distribution. The goal is to

find a subset of decision variables such that constraints are satisfied with a certain probability.

Here, we do not consider probabilistic constraints, we have hard constraints that must be al-

ways true, and we search for optimal probability values for optimizable facts that are present

in the program (they cannot be removed, as happens for decision variables) but with a tunable

probability. Furthermore, these approaches are often tailored to solve specific problems such

as games (Antuori and Richoux 2019), scheduling (Lombardi and Milano 2010), or sequential

planning (Babaki et al. 2017).

3 Probabilistic Logic Programming

Logic Programming offers the possibility to encode problems with a high level of abstraction,

allowing programmers to focus on the overall structure, rather than on implementation details.

However, logic programs are not well suited to handle uncertainty, an intrinsic feature of real

world scenarios. Probabilistic Logic Programming (PLP) (De Raedt et al. 2008; Riguzzi 2018)

extends Logic Programming by adding probabilistic facts that allow to reason with probabilities.

Following the ProbLog (De Raedt et al. 2007) syntax, a probabilistic fact fi has the form

Πi :: fi

where fi is an atom and Πi ∈]0,1], with the meaning that each ground instantiation of fi is

true with probability Πi and false with probability 1−Πi. Probabilistic facts are considered

independent: this may seem a severe restriction but, in practice, does not limit the expressiveness

of the language (Riguzzi 2018). If we consider the following illustrative example:

0.5::no_traffic.

0.9::no_accidents.

on_time:- no_traffic, no_accidents.

we can ask the probability that a driver will arrive on time at work (on time), which is 0.5 ·0.9=

0.45. Similarly, An LPAD is composed of a finite set of probabilistic disjunctive clauses of the

form

h1 : Π1; . . . ;hn : Πn :−b1, . . . ,bm.

where the semicolon stands for disjunction, h1, . . .hn are logical atoms and b1, . . . ,bm are logical



4 Damiano Azzolini and Fabrizio Riguzzi

literals. Π1, . . . ,Πn are real numbers in the interval [0,1] that sum to 1. If this is not true, the head

of the annotated disjunctive clause implicitly contains an extra atom null that does not appear in

the body of any clause; its annotation is 1−∑
n
k=1 Πk.

One of the most followed semantics, the Distribution Semantics (Sato 1995), is at the founda-

tions of several PLP systems. Here, we consider the Distribution Semantics for programs with

a finite Herbrand base (without function symbols). An atomic choice is a selection or not of a

grounding f θ of a probabilistic fact Π :: f . It is usually indicated with ( f ,θ ,s), where s ∈ {0,1}:

if s = 1 the fact is selected, if s = 0 it is not. A set of atomic choices is consistent if only one of

the two alternatives for a probabilistic fact is considered, that is, it does not contain two atomic

choices ( f ,θ ,s) and ( f ,θ , t) with s 6= t. A consistent set of atomic choices forms a composite

choice, and if it contains one atomic choice for every grounding of each probabilistic fact it is

called selection. The probability of a composite choice c can be computed as:

P(c) = ∏
( fi,θ ,1)∈c

Πi · ∏
( fi,θ ,0)∈c

(1−Πi)

A selection identifies a world (a Logic Program) and its probability can be computed as the

product of the probabilities of the atomic choices. The programs do not contain function symbols,

thus the set of worlds is finite and the probabilities of all the worlds add up to 1. Given a ground

query q, the conditional probability of q given a world w, represented with P(q | w), is 1 if the

query is true in the world, 0 otherwise. So, the probability of a (ground) query q can be obtained

marginalizing the joint probability distribution between the worlds w and the query, P(q,w). In

formulas:

P(q) =∑
w

P(q,w) = ∑
w

P(q | w) ·P(w) = ∑
w|=q

P(w)

A composite choice is an explanation for a query q (a conjunction of ground atoms) if q is true in

every world identified by the composite choice. If every world in which q is true belongs to the

worlds identified by a set of explanations, the set is named covering. The probability of a query

can also be defined as the probability measure of a covering set of explanations.

A covering set of explanations for a query can be represented as a Boolean formula in Dis-

junctive Normal Form (DNF). To perform inference on these formulas, usually probabilistic logic

programs are compiled into a target language using knowledge compilation (Darwiche and Marquis 2002).

Among all the possibilities, Binary Decision Diagrams (BDDs) and Sentential Decision Dia-

grams (SDDs) are the most used, since they offer a compact representation. Between the two,

SDDs are more compact than BDDs. However, BDDs are managed by optimized libraries and

usually offer comparable performance. In this paper, we consider BDDs.

A BDD is a direct acyclic graph where each node (that in the PLP setting represents a prob-

abilistic fact) has two edges: the 0 (false) edge and the 1 (true) edge. There are only two types

of terminal nodes: 0 (false) and 1 (true). Some packages introduce the possibility to have a third

edge, the 0-complemented edge, with the meaning that the function represented by the subtree

must be complemented. Here we use this convention. With this third type, the 0-terminal is not

needed. Usually, the 0-edge is graphically represented with a dashed line, the 1-edge with a solid

line and the 0-complemented edge with a dotted line (see Fig. 2 with the running example used

in the paper that will be discussed later).
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4 Probabilistic Optimizable Logic Programs

We denote optimizable facts with the special functor optimizable. They have the following

syntax:

optimizable [Πlb,Πub] :: a.

where a is a logical term, and Πlb and Πub are the lower and upper probabilities for the term

(Πlb < Πub). In our implementation, if lower and upper probabilities are not specified, the range

is by default [0.001,0.999]. Intuitively, these are the facts whose probabilities can be changed

to minimize an objective function subject to constraints. Both the objective function (that may

not be the same of the query) and the constraints can be linear or non-linear combinations of

optimizable facts. As happens for probabilistic facts, also optimizable facts are considered inde-

pendent. We now introduce the definition of Probabilistic Optimizable Logic Program (POLP)

and Probabilistic Optimizable Problem.

Definition 1 (Probabilistic Optimizable Logic Program)

Given an LPAD L , a set of optimizable facts O , an objective function F , and a set of constraints

C , the tuple (L ,O,F ,C ) identifies a Probabilistic Optimizable Logic Program (POLP).

Definition 2 (Probabilistic Optimizable Problem)

Given a Probabilistic Optimizable Logic Program (L ,O,F ,C ), and a conjunction of ground

atoms, the query (q), the probabilistic optimizable problem consists of two steps:

• find a probability assignment A ∗ to optimizable facts oi ∈ O such that the objective func-

tion is minimized (or maximized) and constraints are not violated, i.e.:

A
∗ = argmin

A

(F | C ,A )

• compute the probability of the query given these assignments

P(q |A ∗)

This task can also be considered as parameter learning under constraints.

Consider the following motivating example:

Example 1

Suppose you need to route a signal through a path composed of intermittent edges (connections),

from a source to a given destination. Some of the edges have a fixed probability to be active, while

some other edges can be controlled, and their probabilities can be set. The constraint is that the

probability to reach the destination must be above a certain threshold. The objective function is

that the probability of the edges that can be controlled should be set at the minimal value to reach

the target probability, since setting higher probabilities also requires higher manufacturing costs.

Moreover, the probabilities of the edges should be similar (i.e., as close as possible).

Let us model the previous scenario with a Probabilistic Optimizable Logic Program. Consider

five nodes named a, b, c, d and e. Their connections can be represented with edge/2 facts.

Suppose that edges between a and b, c and e, and d and e cannot be controlled and have, respec-

tively, probability 0.9, 0.3 and 0.8. Edges between b and c and b and d can be controlled and

must have probability in the range [0.3,0.8]. A path between two nodes is represented by pred-

icate path/2 (see Fig. 1). The goal is to minimize the sum of the probabilities of optimizable
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variables (edge(b,c) and edge(b,d)) given that the probability to reach e from a (path(a,e))

must be above a certain threshold. Constraints also impose that the difference between the prob-

abilities of the two optimizable facts should be less than, for example, 0.1. The POLP shown in

Fig. 1 represents the described situation.

0.9::edge(a,b).

optimizable [0.3,0.8]::edge(b,c).

optimizable [0.3,0.8]::edge(b,d).

0.3::edge(c,e).

0.8::edge(d,e).

path(X,X).

path(X,Y):- path(X,Z), edge(Z,Y).

a b

c

d

e

Fig. 1. Program for motivating example (left), together with the represented graph (right).

To simplify the notation, in the remaining part of the paper we remove the explicit probability

signature from facts involved in the optimization task. For example, edge(b,c) represents the

probability of edge(b,c) (P(edge(b,c))). If the goal is to minimize the sum of the probabilities

of edge(b,c) and edge(b,d), the lower bound probability for query path(a,d) is 0.6, and the

difference between the probabilities of the optimizable facts should be less than 0.1, following

Def. 1 we get:

• O = {edge(b,c),edge(b,d)}

• F = minimize(edge(b,d)+ edge(b,c))

• C = {path(a,d)> 0.6,edge(b,d) ∈ [0.3,0.8],edge(b,c)∈ [0.3,0.8],

edge(b,c)− edge(b,d)< 0.1,edge(b,d)− edge(b,c)< 0.1}

Implicitly, path(a,d) ∈ [0,1].

To solve the probabilistic optimizable problem, we introduce the special predicate

prob_optimize/4

that receives as input the query (in our example path(a,e)), the objective function to be mini-

mized (edge(b,c) + edge(b,d)), and a list of constraints. As output, it returns the probability

of the query and the optimal probability assignment to optimizable facts. So, for the previous ex-

ample, the query would be

prob_optimize(

path(a,e),

[edge(b,c) + edge(b,d)],

[path(a,e) > 0.6, edge(b,c) - edge(b,d) < 0.1,

edge(b,d) - edge(b,c) < 0.1],

Assignments).

Lower and upper bounds are directly considered by the predicate, without the need to be

specified also in the constraints list.

The main idea is that a POLP induces a (non) linear function f : Rn→ R, where n is equal to

the number of optimizable facts. In the program shown in Fig. 1, n= 2. Only if n= 1 the function

is linear since there is only one variable involved (with n > 1 we have a joint probability distri-

bution, so an equation with several variables multiplied together). Otherwise, there are several
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pae

1

ebc

eab

ebd

ece

ede

ebd

ece

eab eab

Fig. 2. BDD for the program shown in Fig. 1, where a dashed line represents a 0-edge, a solid

line the 1-edge, and a dotted line the 0-complemented edge.

variables multiplied together. Consider Fig. 2 that represents the BDD for the query path(a,e),

denoted with pae, where exy stands for edge(x,y). There are three paths with probability greater

than 0. The induced function is the sum of the functions induced by the three paths. For exam-

ple, the leftmost path that goes to terminal 1 with a regular arc induces the following equation:

f (ebc,ebd) = (1− ebc) · ebd ·0.72, where 0.72 = eab · ede.

To solve the optimization problem, the following operations are performed: first, the BDD for

the query is built, then paths and their probabilities are computed using Algorithm 2. It goes as

follows: first, the BDD is reordered to have the optimizable variables first. Then, the function

PATHSPROBREC is recursively called until a node associated with a not-optimizable variable is

found (including terminal nodes). From there, to compute probabilities, function PROB presented

in (De Raedt et al. 2007) is called and an empty path list and the computed probability are re-

turned. Essentially, function PROB recursively analyzes the BDD until the terminal is found, and,

from there, probabilities are computed with a dynamic programming algorithm. It is reported in

Algorithm 3 for clarity. When the node is associated with an optimizable fact, the paths computed

at the true and false child are extended with the current node index, provided that the path has

probability greater than 0. To speed up computation, already computed paths as well as already

computed probabilities (used in function PROB), are stored in a table: in this way, when an al-

ready encountered node is found, the paths and the probabilities are retrieved from the memory,

rather than recomputed.

From the list of paths, where optimizable variables are kept symbolically, we obtain an equa-

tion, that we call it query equation in this way: we multiply together all the nodes ni of the paths

and their probability for each path in the list of paths (if the node is selected as 0, we multiply by

1− ni) and add all the results. So, for example, for Fig. 2, the resulting list of paths obtained by

Algorithm 2 is [[0.774, [[ebd,1], [ebc,1]]], [0.27, [[ebd,0], [ebc,1]]], [0.72, [[ebd,1], [ebc,0]]]], where

0.774 = eab · (ece + (1− ece) · ede), 0.72 = eab · ede, and 0.27 = eab · ece (obtained by follow-

ing the correspondent paths on the BDD), which represents the equation ebd · ebc · 0.774+(1−

ebd) ·ebc ·0.27+ ebd · (1− ebc) ·0.72. The symbolic equation is then simplified and substituted in
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Algorithm 1 Function OPTIMIZEPROB: optimization of probability of random variables.

1: function OPTIMIZEPROB(query,objective,constraintsList,algorithm)

2: root← Compute the BDD for the query

3: paths← PATHSPROB(root)

4: query equation← convert paths into symbolic equation

5: Simplify query equation

6: Replace constraints from constraintsList involving the query with query equation

7: assignments← Call the non-linear optimization solver with [objective, constraintsList, algorithm]

8: prob← evaluate(query equation | assignments)

9: return [assignments, prob]

10: end function

the constraint(s) involving the query. This equation, along with all constraints specified by the

user, are added to the (non-linear) optimization problem and passed to a non-linear optimization

solver. Finally, once the optimal value(s) are calculated, the probability of the query is computed

by evaluating the query equation, where the symbolical optimizable variables are substituted by

their optimal values. The whole process is reported in Algorithm 1. If we consider the program

shown in Figure 1, one of the possible solutions is given by f (0.6352,0.7352) = 1.3704, which

yields a probability of the query of 0.6.

The complexity of answering probabilistic queries is, in general, #P-complete (Koller and Friedman 2009).

The construction of the BDD starting from the derivations of the program is as well #P-complete,

and so the solution of the Probabilistic Optimizable Problem is, at least, in that class. Finding the

optimal order of the variables that minimizes the size of a BDD (and thus reduces the size of the

symbolic equation) is a NP-complete task (Bollig and Wegener 1996), so it is generally infeasi-

ble. Moreover, if we choose this approach, every time we reorder the BDD we need to traverse

it again to extract a new equation, and check whether it is more compact than the previously ob-

tained. Even if the traversal of a BDD can be performed polynomially (we visit every node only

once), the number of possible combinations of variables is too large to check exhaustively. For

these reasons, we decided to extract the equation directly from the BDD after having reordered

it by moving nodes that correspond to optimizable facts first. The reorder can be performed

polynomially in the size of the BDD by swapping adjacent variables (Jiang et al. 2017).

The reordering of the BDD is crucial since it allows to directly use function PROB and obtain

a more compact symbolic representation, where the combinations of the optimizable variables

are multiplied by a single numerical value. Similarly, simplification of the query equation is fun-

damental, since it greatly reduces its size, resulting in faster computation. Consider, for example,

the equation represented by the BDD shown in Fig. 2 written before and reported here for clarity:

ebd ·ebc ·0.774+(1− ebd) ·ebc ·0.27+ ebd · (1− ebc) ·0.72. After the simplification, it is reduced

as: −0.216 · ebc · ebd + 0.27 · ebc+ 0.72 · ebd (the number of operations is now 6, previously was

10). Moreover, this process may also reduce the impact of the BDD structure, since the order of

the variables in the BDD also determines its size: several BDDs can represent the same function,

but some of these BDDs may not be optimal in terms of compactness. If we directly utilize the

query equation extracted by Algorithm 2, without simplifying the result, we may obtain a long

equation that involves more computations (multiplications and summations) than the strict neces-

sary. Since the query equation can be called several times during the solution of the optimization

problem, not simplifying it can largely increase the overall execution time.
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Algorithm 2 Function PATHSPROB: computation of all the paths of a BDD and of their proba-

bility.

1: function PATHSPROB(root)

2: root ′← REORDER (root) ⊲ BDD reordering

3: TablePaths← /0

4: TableProb← /0

5: if root ′.comp then

6: comp← true

7: else

8: comp← f alse

9: end if

10: return PATHSPROBREC(root ′ ,comp)

11: end function

12: function PATHSPROBREC(node,comp)

13: comp← node.comp⊕ comp

14: if var(node) is not associated to an optimizable fact then

15: p←PROB(node) ⊲ Call to PROB

16: if comp then

17: Res← [1− p, []]
18: else

19: Res← [p, []]
20: end if

21: else

22: if TablePaths(node.index) 6= /0 then

23: return TablePaths(node.index)
24: else

25: Lp0 ← PATHSPROBREC(child0 (node),comp)

26: Lp1 ← PATHSPROBREC(child1 (node),comp)

27: Res← []
28: for all path ∈ Lp0 do

29: if path.prob > 0 then

30: Res← Res∪{path∪ [node.index,0]}
31: end if

32: end for

33: for all path ∈ Lp1 do

34: if path.prob > 0 then

35: Res← Res∪{path∪ [node.index,1]}
36: end if

37: end for

38: end if

39: Add node.index→ Res to TablePaths

40: end if

41: return Res

42: end function

5 Experiments

We implemented the algorithm presented before1 using C and exploiting the library for non-

linear optimization NLopt (Johnson 2020) to solve the optimization problem and the library

CUDD (Somenzi 2015) for the operations on BDD. The Probabilistic Logic Part is managed by

SWI-Prolog (Wielemaker et al. 2012) version 8.3.15. The simplification of the query equation

is performed with the function simplify from Python SymPy package (Meurer et al. 2017):

guided by some heuristics, it iteratively applies some simplifications to the equation to reduce its

size. However, in general, there is no guarantee that the minimal size is found.

To test our algorithm on real world scenarios described in Section 1, we selected from (Rossi and Ahmed 2015)

several dataset characterized by different structures, among them: social network, collaboration

network, road connections, and power network. We pre-process the data by converting the matrix

in a set of facts of the form edge(a,b) (eventually prepending the functor optimizable and

adding a probability range or value) to represent a connection between nodes a and b. We choose

these datasets since they represent several real world networks, linked to the motivations listed in

1 Source code available at: https://bitbucket.org/machinelearningunife/polp_experiments

https://bitbucket.org/machinelearningunife/polp_experiments
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Algorithm 3 Function Prob: computation of the probability of a BDD.

1: function PROB(node)

2: if node is a terminal then

3: return 1

4: else

5: if TableProb(node.pointer) 6= null then

6: return TableProb(node)
7: else

8: p0←PROB(child0 (node))
9: p1←PROB(child1 (node))

10: if child0(node).comp then

11: p0← (1− p0)
12: end if

13: Let π be the probability of being true of var(node)
14: Res← p1 ·π + p0 · (1−π)
15: Add node.pointer→ Res to TableProb

16: return Res

17: end if

18: end if

19: end function

Section 1. We selected to test the implementation on, among other, social networks, collaboration

networks, road networks, and power networks. For all of these, the goal is to constrain the proba-

bility of the paths between a random source (Source) and a random destination (Dest), provided

that the path between these two nodes exists, to be greater than 0.8, while minimizing the sum

of the probabilities of optimizable edges. Note that we minimized the sum of the probabilities of

all the optimizable facts, not only the ones involved in the query, since it may be difficult to spot

which facts are involved in it. For example, if you want to compute all the paths from a source to

a destination, it is difficult to say which edges will be involved, without running the program. The

number of optimizable facts (edges) is randomly set to 50% of the total number of edges, and the

values lower and upper bounds of the probability of optimizable facts are respectively 0.001 and

0.999. The remaining facts are probabilistic facts with probability 0.5. Results are averages of

10 runs with randomly chosen source and destination. Facts (both optimizable and probabilistic)

are of the form edge/2, and the query is path(Source,Dest) > 0.8, where path/2 is the

predicate described above (Fig 1).

In a second set of experiments, we generate complete graphs of increasing size. As before, the

goal is to minimize the sum of the optimizable facts while the probability of the path between 1

and N (where N is the size of the graph) must be above 0.8. The subdivision between optimizable

and probabilistic facts is the same as before (50-50) as well as the structure of the facts and the

query (edge/2 facts, path(1,N) > 0.8). For this experiment, the graph size (and thus the

number of optimizable facts) is notably smaller than the previous dataset. However, the solution

of the optimization problem is harder, since the graph is fully connected, so there are many

paths from the root of the BDD to the terminal, resulting in a very long and complex constraint

function.

For all the experiments, we tested three local gradient-based optimization algorithms available

in NLopt (Johnson 2020): two based on conservative convexseparable approximations (Svanberg 2002),

denoted with MMA and CCSAQ, and one based on sequential quadratic programming (Kraft 1994),

denoted with SLSQP.

Experiments were conducted on a cluster2 with Intel® Xeon® E5-2630v3 running at 2.40

GHz. We set the tolerance to 10−5, that is, the optimization process stops when the variation of

2 https://www.fe.infn.it/coka/doku.php

https://www.fe.infn.it/coka/doku.php
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the objective function is less than this value. The available memory for the execution has been

set to 8GB. Execution times are computed with the SWI-Prolog predicate statistics/2 with

the keyword runtime. The maximum execution time for each experiment was 8 hours.

Results are shown in Table 1 and Table 2, which report the average overall execution time

(BDD generation, simplification and optimization) and the average probability for all three algo-

rithms. For the first set of experiments, we also tabled the standard deviations of the 10 averaged

probabilities and the number of vertices and edges for each dataset. We marked in bold the

best algorithm for every experiment. In Table 1, the dataset bio stands for bio-DM-LC, ca for

ca-netscience, E60 for ENZYMES g60, IIP for internet-industry-partnerships, p949 for power-

494-bus, p669 for power-662-bus, rtf for reptilia-tortoise-fi-2008, rc for road-chesapeake, rt for

rt-retweet, soc for soc-tribes, and web for webkb-wisc (all available at (Rossi and Ahmed 2015)).

Features Time (s) Probability StdDev (Prob)

Dataset |V| |E| C M S C M S C M S

bio 658 1129 2595 4934 1072 0.850 0.823 0.800 0.065 0.059 0.004

ca 379 914 2859 2137 387 0.821 0.823 0.816 0.023 0.031 0.030

DD244 291 882 2070 2355 521 0.822 0.815 0.800 0.037 0.030 0.000

E60 10 36 25 30 37 0.887 0.887 0.887 0.068 0.065 0.065

IIP 219 613 1079 690 209 0.802 0.755 0.801 0.004 0.190 0.004

p494 494 586 3026 3898 1052 0.832 0.820 0.800 0.041 0.029 0.000

p662 662 906 16167 7990 2292 0.802 0.824 0.800 0.003 0.020 0.000

rtf 283 418 271 211 48 0.817 0.826 0.800 0.029 0.026 0.000

rc 39 170 47 35 7 0.837 0.864 0.829 0.063 0.065 0.060

rt 97 117 21 13 3 0.827 0.840 0.802 0.058 0.056 0.004

soc 16 58 133 133 11 0.842 0.842 0.842 0.057 0.057 0.057

web 265 530 829 712 146 0.821 0.821 0.801 0.057 0.044 0.003

Table 1. Results for networks experiments. C, M and S stand respectively for CCSAQ, MMA,

and SLSQP algorithms. |V| and |E| are number of vertices and edges.

N C (s) M (s) S (s) C (prob) M (prob) S (prob)

3 1.6 1.7 0.4 0.800 0.800 0.800

4 8.2 2.7 0.4 0.818 0.800 0.800

5 4.5 4.7 0.9 0.800 0.800 0.800

6 10.7 12.4 1.3 0.800 0.800 0.800

7 202.4 193.8 30.1 0.800 0.800 0.800

8 1,360.3 1,600.6 177.6 0.800 0.800 0.800

Table 2. Results for complete graphs experiments.

The time for the BDD construction and for the query equation extraction is an order of mag-

nitude less than the time used for the optimization, often negligible. This is also the case for the

simplification of the equation (even if it is a little more expensive than the BDD extraction, and

sometimes, for larger graphs, it requires several seconds), so we decided to not separate the three

values. Rather, we provide only the sum of the execution times of the three operations.

Usually, the best algorithm (fastest and more accurate in terms of difference with the lower
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probability, 0.8 for these experiments) is SLSQP, with an important difference in terms of both

execution time and probability in most of the cases. Especially, for the complete graph dataset,

SLSQP requires almost ten times less the time required by CCSAQ and MMA for bigger graphs.

The execution time exceeds eight hours for complete graph of size 9. The main reason is

that nodes have high degree and so the number of paths increases exponentially, resulting in an

explosion of the length of the query equation. To see this phenomenon, consider the dataset bio-

DM-LC and power-494-bus: the former has approximately 200 vertices and edges more than the

latter. However, execution times are comparable, especially for SLSQP. This also occurs for dif-

ferent networks we tested, still taken from (Rossi and Ahmed 2015), where some of the queries

does not terminate in the time limit, such as soc-firm-hi-tech, ia-crime-moreno, lp adlittle, and

soc-wiki-vote.

The bottleneck of our approach is, as expected, in the solution of the optimization problem,

rather than the construction of the BDD representing the program or the simplification of the

query equation. One possible trivial solution to this problem is reducing the tolerance of the

optimization algorithm, but at the cost of less accurate results. Alternatively, we can try to provide

more compact representations of the programs (some alternatives to BDDs exist, as discussed at

the beginning of the paper), or leverage techniques from lifted inference. These are all directions

of possible interesting future works.

6 Conclusions

In this paper, we introduced the definition of Probabilistic Optimizable Logic Program and pro-

posed a simple yet effective algorithm to find the optimal probabilities of optimizable facts sub-

ject to constraints. Empirical results show that the proposed solution is scalable also for datasets

with several hundreds of vertices. As future work, we planned to test other optimization packages

and apply this approach to programs with continuous random variables (Azzolini et al. 2019;

Azzolini et al. 2021).
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