The development of robotic systems with a certain level of autonomy to be used in critical scenarios, such as an operating room, necessarily requires a seamless integration of multiple state-of-the-art technologies. In this paper we propose a cognitive robotic architecture that is able to help an operator accomplish a specific task. The architecture integrates an action recognition module to understand the scene, a supervisory control to make decisions, and a model predictive control to plan collision-free trajectory for the robotic arm taking into account obstacles and model uncertainty. The proposed approach has been validated on a simplified scenario involving only a da VinciO surgical robot and a novel manipulator holding standard laparoscopic tools.

Cognitive Robotic Architecture for Semi-Autonomous Execution of Manipulation Tasks in a Surgical Environment

Sozzi A.
Software
;
Bonfe' M.
Conceptualization
;
Secchi C.
Penultimo
Supervision
;
2019

Abstract

The development of robotic systems with a certain level of autonomy to be used in critical scenarios, such as an operating room, necessarily requires a seamless integration of multiple state-of-the-art technologies. In this paper we propose a cognitive robotic architecture that is able to help an operator accomplish a specific task. The architecture integrates an action recognition module to understand the scene, a supervisory control to make decisions, and a model predictive control to plan collision-free trajectory for the robotic arm taking into account obstacles and model uncertainty. The proposed approach has been validated on a simplified scenario involving only a da VinciO surgical robot and a novel manipulator holding standard laparoscopic tools.
2019
9781728140049
Manipulators, Model predictive control, Robotic surgery, Uncertainty analysis
File in questo prodotto:
File Dimensione Formato  
IROS2019_DeRossi-etal.pdf

solo gestori archivio

Descrizione: versione editoriale
Tipologia: Full text (versione editoriale)
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 2.51 MB
Formato Adobe PDF
2.51 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/2422133
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 21
  • ???jsp.display-item.citation.isi??? 15
social impact