Compared to the traditional synthetic fibrous materials, natural fibres represent sustainable solution to be used either in building construction and noise control engineering and acoustic treatments. Natural fibres are mainly employed in the building industry for their hygrothermal properties, however the possibility to also use them for acoustic purposes would greatly increase their appeal to the market. While synthetic fibres have been studied for almost fifty years, the knowledge of natural fibres is still limited and needs to be expanded. Natural fibres are affected by a large variability of the physical properties, which consequently causes great uncertainty in numerical modelling and difficulties during the design process of acoustics treatments. This study highlights the possibility to enhance the acoustic performance of hemp fibrous materials through the manufacturing process, investigating how each treatments affects the material's physical characteristics and its sound absorption coefficient. Moreover, a simplified model to evaluate the acoustic performance of hemp fibrous materials as a function of their density is proposed, in order to provide a practical tool to investigate and compare different solutions. The physical parameters numerically evaluated for a varying compression rate have been compared with the experimental results, measured at each stage of the production process on samples with a different density and thickness. The global reliability of the proposed approach is finally investigated by comparing the experimental sound absorption for normal incidence with the results obtained from the Johnson-Champoux-Allard model. (C) 2019 Elsevier Ltd. All rights reserved.
Improving the sound absorption performance of sustainable thermal insulation materials: Natural hemp fibres
Santoni A.
Primo
Membro del Collaboration Group
;Bonfiglio P.Secondo
Membro del Collaboration Group
;Fausti P.Membro del Collaboration Group
;Marescotti C.Membro del Collaboration Group
;Mazzanti V.Membro del Collaboration Group
;Mollica F.Penultimo
Membro del Collaboration Group
;Pompoli F.Ultimo
Membro del Collaboration Group
2019
Abstract
Compared to the traditional synthetic fibrous materials, natural fibres represent sustainable solution to be used either in building construction and noise control engineering and acoustic treatments. Natural fibres are mainly employed in the building industry for their hygrothermal properties, however the possibility to also use them for acoustic purposes would greatly increase their appeal to the market. While synthetic fibres have been studied for almost fifty years, the knowledge of natural fibres is still limited and needs to be expanded. Natural fibres are affected by a large variability of the physical properties, which consequently causes great uncertainty in numerical modelling and difficulties during the design process of acoustics treatments. This study highlights the possibility to enhance the acoustic performance of hemp fibrous materials through the manufacturing process, investigating how each treatments affects the material's physical characteristics and its sound absorption coefficient. Moreover, a simplified model to evaluate the acoustic performance of hemp fibrous materials as a function of their density is proposed, in order to provide a practical tool to investigate and compare different solutions. The physical parameters numerically evaluated for a varying compression rate have been compared with the experimental results, measured at each stage of the production process on samples with a different density and thickness. The global reliability of the proposed approach is finally investigated by comparing the experimental sound absorption for normal incidence with the results obtained from the Johnson-Champoux-Allard model. (C) 2019 Elsevier Ltd. All rights reserved.File | Dimensione | Formato | |
---|---|---|---|
1-s2.0-S0003682X19301343-main.pdf
solo gestori archivio
Tipologia:
Full text (versione editoriale)
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
1.68 MB
Formato
Adobe PDF
|
1.68 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
11392_2406705_Postprint_Mazzanti.pdf
accesso aperto
Tipologia:
Pre-print
Licenza:
PUBBLICO - Pubblico con Copyright
Dimensione
4.48 MB
Formato
Adobe PDF
|
4.48 MB | Adobe PDF | Visualizza/Apri |
11392_2406705_POST_FAUSTI.pdf
Open Access dal 01/03/2021
Tipologia:
Post-print
Licenza:
Creative commons
Dimensione
4.53 MB
Formato
Adobe PDF
|
4.53 MB | Adobe PDF | Visualizza/Apri |
I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.