Pre-peptide regions of secreted proteins display wide sequence variability, even among highly homologous proteins such as coagulation factors, and are intracellularly removed, thus potentially favoring secretion of wild-type proteins upon suppression of nonsense mutations (translational readthrough). As models we selected F9 nonsense mutations with readthrough-favorable features affecting the pre-peptide and pro-peptide regions of coagulation factor IX (FIX), which cause hemophilia B (HB). Only the p.Gly21Ter (c.61G > T) in the variable pre-peptide hydrophobic core significantly responded (secretion, 4.1 ± 0.5% of wild-type; coagulant activity, 4.0 ± 0.3%) to the readthrough-inducer geneticin. Strikingly, for the p.Gly21Ter mutation, the resulting specific coagulant activity (0.96 ± 0.11) was compatible with normal function, thus suggesting secretion of FIX with wild-type features upon readthrough and removal of pre-peptide. Expression of the predicted readthrough-deriving missense variants (Gly21Trp/Cys/Arg) revealed a preserved specific activity (ranging from 0.84 to 0.98), thus supporting our observation. Conversely, rescue of the p.Cys28Ter (c.84T > A) and p.Lys45Ter (c.133A > T) was prevented by constraints of adjacent cleavage sites, a finding consistent with the association of most missense mutations affecting these regions with severe or moderate HB. Overall, our data indicate that suppression of nonsense mutations in the pre-peptide core preserves mature protein features, thus making this class of mutations preferred candidates for therapeutic readthrough.
Secretion of wild-type factor IX upon readthrough over F9 pre-peptide nonsense mutations causing hemophilia B
Ferrarese, MattiaPrimo
;Testa, Maria Francesca;Balestra, Dario;Bernardi, Francesco;Pinotti, Mirko
;Branchini, AlessioUltimo
2018
Abstract
Pre-peptide regions of secreted proteins display wide sequence variability, even among highly homologous proteins such as coagulation factors, and are intracellularly removed, thus potentially favoring secretion of wild-type proteins upon suppression of nonsense mutations (translational readthrough). As models we selected F9 nonsense mutations with readthrough-favorable features affecting the pre-peptide and pro-peptide regions of coagulation factor IX (FIX), which cause hemophilia B (HB). Only the p.Gly21Ter (c.61G > T) in the variable pre-peptide hydrophobic core significantly responded (secretion, 4.1 ± 0.5% of wild-type; coagulant activity, 4.0 ± 0.3%) to the readthrough-inducer geneticin. Strikingly, for the p.Gly21Ter mutation, the resulting specific coagulant activity (0.96 ± 0.11) was compatible with normal function, thus suggesting secretion of FIX with wild-type features upon readthrough and removal of pre-peptide. Expression of the predicted readthrough-deriving missense variants (Gly21Trp/Cys/Arg) revealed a preserved specific activity (ranging from 0.84 to 0.98), thus supporting our observation. Conversely, rescue of the p.Cys28Ter (c.84T > A) and p.Lys45Ter (c.133A > T) was prevented by constraints of adjacent cleavage sites, a finding consistent with the association of most missense mutations affecting these regions with severe or moderate HB. Overall, our data indicate that suppression of nonsense mutations in the pre-peptide core preserves mature protein features, thus making this class of mutations preferred candidates for therapeutic readthrough.File | Dimensione | Formato | |
---|---|---|---|
humu.23404.pdf
solo gestori archivio
Tipologia:
Full text (versione editoriale)
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
1.98 MB
Formato
Adobe PDF
|
1.98 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.