Due to its potential to lower exposure to X-ray radiation and reduce the scanning time, region-of-interest (ROI) computed tomography (CT) is particularly appealing for a wide range of biomedical applications. To overcome the severe ill-posedness caused by the truncation of projection measurements, ad hoc strategies are required, since traditional CT reconstruction algorithms result in instability to noise, and may give inaccurate results for small ROI. To handle this difficulty, we propose a nonsmooth convex optimization model based on ℓ1 shearlet regularization, whose solution is addressed by means of the variable metric inexact line search algorithm (VMILA), a proximal-gradient method that enables the inexact computation of the proximal point defining the descent direction. We compare the reconstruction performance of our strategy against a smooth total variation (sTV) approach, by using both Poisson noisy simulated data and real data from fan-beam CT geometry. The results show that, while for synthetic data both shearets and sTV perform well, for real data, the proposed nonsmooth shearlet-based approach outperforms sTV, since the localization and directional properties of shearlets allow to detect finer structures of a textured image. Finally, our approach appears to be insensitive to the ROI size and location.

A nonsmooth regularization approach based on shearlets for Poisson noise removal in ROI tomography

Tatiana A. Bubba
Membro del Collaboration Group
;
Gaetano Zanghirati
Membro del Collaboration Group
;
2018

Abstract

Due to its potential to lower exposure to X-ray radiation and reduce the scanning time, region-of-interest (ROI) computed tomography (CT) is particularly appealing for a wide range of biomedical applications. To overcome the severe ill-posedness caused by the truncation of projection measurements, ad hoc strategies are required, since traditional CT reconstruction algorithms result in instability to noise, and may give inaccurate results for small ROI. To handle this difficulty, we propose a nonsmooth convex optimization model based on ℓ1 shearlet regularization, whose solution is addressed by means of the variable metric inexact line search algorithm (VMILA), a proximal-gradient method that enables the inexact computation of the proximal point defining the descent direction. We compare the reconstruction performance of our strategy against a smooth total variation (sTV) approach, by using both Poisson noisy simulated data and real data from fan-beam CT geometry. The results show that, while for synthetic data both shearets and sTV perform well, for real data, the proposed nonsmooth shearlet-based approach outperforms sTV, since the localization and directional properties of shearlets allow to detect finer structures of a textured image. Finally, our approach appears to be insensitive to the ROI size and location.
2018
Computed tomography, Region-of-interest tomography, Shearlets, Wavelets, Forward-backward algorithms, Nonsmooth optimization
File in questo prodotto:
File Dimensione Formato  
2018.a nonsmooth regularization approach based on shearlets for Poisson noise removal in ROI tomography.pdf

solo gestori archivio

Tipologia: Full text (versione editoriale)
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 5.23 MB
Formato Adobe PDF
5.23 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
BubbaEtAl_NonsmoothRegularizationROICTPoissonNoise_Rev2.pdf

accesso aperto

Tipologia: Pre-print
Licenza: PUBBLICO - Pubblico con Copyright
Dimensione 7.55 MB
Formato Adobe PDF
7.55 MB Adobe PDF Visualizza/Apri

I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/2380289
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 11
  • ???jsp.display-item.citation.isi??? 10
social impact