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Abstract

Due to its potential to lower exposure to X-ray radiation and reduce the scan-

ning time, region-of-interest (ROI) computed tomography (CT) is particularly

appealing for a wide range of biomedical applications. To overcome the se-

vere ill-posedness caused by the truncation of projection measurements, ad hoc

strategies are required, since traditional CT reconstruction algorithms result in

instability to noise, and may give inaccurate results for small ROI. To handle

this difficulty, we propose a nonsmooth convex optimization model based on

`1 shearlet regularization, whose solution is addressed by means of the variable

metric inexact line search algorithm (VMILA), a proximal-gradient method that

enables the inexact computation of the proximal point defining the descent di-

rection. We compare the reconstruction performance of our strategy against

a smooth total variation (sTV) approach, by using both Poisson noisy simu-

lated data and real data from fan-beam CT geometry. The results show that,

while for synthetic data both shearets and sTV perform well, for real data, the

proposed nonsmooth shearlet-based approach outperforms sTV, since the local-

ization and directional properties of shearlets allow to detect finer structures of
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a textured image. Finally, our approach appears to be insensitive to the ROI

size and location.

Keywords: Computed tomography, Region-of-interest tomography, Shearlets,

Wavelets, Forward-backward algorithms, Nonsmooth optimization

2010 MSC: 44A12, 42C40, 65K10, 65F22, 92C55

1. Introduction

Computed Tomography (CT) was historically the first method allowing to

acquire images of an object inner structure non-invasively, i.e., without pene-

trating or cutting into pieces the object. CT has been a major breakthrough not

only in diagnostic Medicine, but also as a generic industrial diagnostic tool for5

nondestructive material testing. To generate CT images, X-rays are propagated

through the object and projections are collected from multiple views so that

the density of the object can be reconstructed by solving an appropriate inverse

problem.

Since the beginning of its development during the 1960s, research in the field10

of CT has been constantly active. Nowadays, classical CT technologies are con-

sidered mature fields but, in biomedical applications, there is an ever-growing

interest in CT techniques that allows a lower X-ray radiation dose, since expo-

sure to X-ray radiation comes with health hazards for patients. This motivates

the renewed interest in problems of limited or incomplete data tomography. In-15

tuitively, it is clear that when not all lines are measured or not all views are

considered, there is a reduction of the X-ray dose. Moreover, in many important

tomography problems complete data can not be obtained. Region-of-interest to-

mography (ROI CT) precisely belongs to the class of limited data tomography

problems [1]. In this modality, measurements are taken only within a limited20

convex ROI (generally, a circle), as illustrated in Figure 1, resulting not only in

a reduced radiation exposure, but also in a shortening of the scanning time. The

ROI CT problem consists in reconstructing the structure of the ROI only from

these data. Because of the overlapping principle of the CT measurements, the
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Figure 1: Illustration of the region-of-interest tomography setup: measurements are taken

only within a limited convex ROI (e.g., a circle). More general convex ROIs can be handled

by considering the minimal disk which enclose this ROI and reconstructing for this disk.

contribution from the object outside the ROI is also included into the measured25

data. This problem comes up, e.g., in biomedical applications of CT or micro-

CT, where information is required only about some ROIs, or in high-resolution

tomography problems of small parts of objects, for which it is difficult, or even

impossible, to get the complete high-resolution CT data. Practical examples

are contrast-enhanced cardiac imaging or surgical implant procedures like the30

positioning of intracranial stents [2].

When one attempts to solve the reconstruction problem from incomplete

or truncated projections, as in the case of ROI CT, the ill-posedness (which is

already a main issue of the classical CT reconstruction problem [3]) is even more

severe. Thus, ad hoc strategies are required to ensure reliable reconstructions.35

Indeed, traditional CT algorithms straightforwardly applied to the ROI CT

problem may create unacceptable artifacts which overlap features of interest,

being more and more unstable to noise as the size of the ROI decreases and

resulting in inaccurate or useless images [4].

The aim of this paper is to compute a regularized solution to the ROI CT

problem from noisy data, without any assumption on the ROI size or location.
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We propose to minimize a functional of the form

min
f∈Rn

Γ0(f) + Γ1(f) (1)

where f is the (density or attenuation function of the) object to be recon-40

structed, Γ0(·) is the data mismatch term, and Γ1(·) includes a priori informa-

tion on the solution. We use a maximum likelihood approach [5] that leads to

a data mismatch term expressed by means of the Kullback-Leibler divergence

of the truncated projections from the observed noisy projections, due to the

presence of Poisson noise in CT measured data. The term Γ1(·) accounts for45

the ill-posedness of the ROI CT problem: we apply regularization directly to

the missing data, by imposing sparsity (in the sense of the `1-norm) on their

shearlet coefficients [6], and this term is possibly coupled with the indicator

function of a suitable feasible set. The reason for choosing shearlets, over many

other possible sparsifying transforms, is that the localization and directional50

properties of shearlets allow to detect finer structures. The focus of the paper

is, indeed, on real data, which generally exhibits a diversified texture that is not

piece-wise constant as in synthetic test images: we test our approach on a rather

challenging target, made of a lotus root filled with objects of different shapes,

sizes, contrasts and attenuations [7]. To confirm the findings on the lotus root55

data set, we test our approach on a further real data set, made of a walnut [8].

We compare the shearlet based regularization against a smoothed total variation

(sTV) strategy, as it is widely used in medical imaging and in tests on synthetic

phantom data. The goal is to show that, while for synthetic data both shearets

and sTV perform similarly (and sufficiently well), for real data the proposed60

nonsmooth shearlet-based approach outperforms sTV, yielding more accurate

reconstructions.

The solution of (1) is addressed by means of the recently proposed variable

metric inexact line search algorithm (VMILA) [9], a proximal-gradient method

that enables the inexact computation of the proximal point defining the de-65

scent direction and guarantees the sufficient decrease of the objective function

by means of an Armijo–like backtracking procedure. VMILA is also equipped
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with an adaptive steplength selection based on the Barzilai-Borwein updating

rules [10, 11, 12] and a variable metric expressed by means of a scaling matrix

whose updating rule is based on a suitable decomposition of the gradient of the70

(smooth part of the) objective function [13, 5].

The strength of our approach is that our optimization strategy is specifically

targeted to ROI CT reconstruction: accurate and robust ROI reconstruction,

even for very small ROIs, are guaranteed by the presence of the sparsity regu-

larizing term and by an accurate modeling of the data noise, thanks to the max-75

imum likelihood approach. The use of shearlets, combined with VMILA, is new

to the ROI CT literature, even if, for classical (i.e., non-limited) CT problems,

the shearlet representation has been used both to invert the Radon transform

directly [14] and as a regularization tool in an iterative approach [15, 16]. Re-

cent contributions can be found in literature, which deal with approaches based80

on less recent multiscale methods. A Bayesian multiresolution method for local

tomography reconstruction in dental X-ray imaging is proposed in [17], using a

wavelet basis for the representation of the dental structures, with high resolu-

tion inside the ROI and coarser resolution outside the ROI. This approach is

closely related to the one recently proposed in [18]. A wavelet-based regular-85

ization algorithm based on iterative reconstruction-reprojection [19] is proposed

in [20], where a smoothing convolution operator for the re-projecting phase is

included. Also the regularity-inducing convex optimization (RICO) algorithm

uses a wavelet-based regularization [21]. Other iterative approaches adapted

from classical CT to the ROI CT problem include the maximum likelihood90

expectation-maximization algorithm [22], the simultaneous iterative reconstruc-

tion technique [23] and the least-squares conjugate gradient method [24]. For

all these methods, the performance is usually rather sensitive to the ROI size

and, in general, they do not account for the presence of noise, but, when they

do, a Gaussian process is typically assumed. Lastly, in [25], the algorithm by95

Chambolle and Pock [26] is applied to an optimization problem expressed by

means of a data fidelity term, which compares a derivative of the estimated data

with the available projection data.
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Beside iterative methods, during the last decade a bunch of analytic tech-

niques has been proposed to address the problem of ROI reconstruction from100

truncated projections. A non exhaustive list includes: (i) Lambda tomogra-

phy [27, 28], a gradient-like nonquantitative technique that gives the values and

locations of jumps but does not allow to reconstruct the attenuation function

pointwise; (ii) Differentiated Back-Projection (DBP) [29, 30, 31], a technique

that relies on the inversion of the so-called truncated Hilbert transform; (iii) the105

SVD-based DBP [32]. A thorough review can be found in [33].

The approach we propose partially relies on the setup in [21]. However,

our approach differs in the objective function, which precisely accounts for the

presence of Poisson noise and considers shearlets instead of wavelets, for a more

accurate recovery of the texture of real data. Also, in our paper we compare110

different regularization terms to identify the model which better provides the

desired features of the image to reconstruct.

The paper is organized as follows. In Section 2 we formulate the ROI CT op-

timization problem as a nonsmooth convex constrained minimization problem,

as follows from a maximum-likelihood approach to Poisson data [5]. In Section 3115

we summarize the main features of VMILA [9], with some considerations for its

practical implementation when dealing with the ROI CT problem. Lastly, in

Section 4 we describe our numerical experiments with a particular focus on real

data reconstructions. Section 5 is devoted to draw some conclusions and future

work.120

2. A discrete ROI optimization problem

The mathematical problem of computed tomography is modeled trough the

notion of X-ray transform [4]. Given a function f ∈ L1(Rd), with d ≥ 2, the

X-ray transform X : L1(Rd)→ T d of f is the line integral of f along the lines

`(ω, ξ):

(Xf)(ω, ξ) =

∫
`(ω,ξ)

f(x) dx =

∫
R
f(ξ + tω) dt,
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where T d = {(ω, ξ) : ω ∈ Sd−1, ξ ∈ ω⊥} is the tangent bundle to the unit

sphere Sd−1 in Rd.

When d = 2, the X-ray transform coincides with the Radon transform (up

to a different parametrization). Namely, if ω ∈ R2 is a function of a polar angle

θ ∈ R, f ∈ L1(R2) and x ∈ R2, the X-ray transform (or, equivalently, the Radon

transform) of f at (θ, τ) is the line integral of f over the lines (or rays) `(θ, τ)

perpendicular to ωθ with signed distance τ ∈ R from the origin:

y(θ, τ) = (Xf)(θ, τ) =

∫
`(θ,τ)

f(x) dx =

∫
R2

δ(τ − 〈x, ωθ〉) f(x) dx, (2)

where `(θ, τ) = {x ∈ R2 : 〈x, ωθ〉 = τ} and the collection of projections y(θ, τ)

is usually referred to as sinogram. In particular, equation (2) can be understood

as a Freedholm integral equation of the first kind:

y(θ, τ) =

∫
R2

K(x, θ, τ)f(x) dx,

where the kernel K(x, θ, τ) is given by K(x, θ, τ) = δ(τ − 〈x, ωθ〉). This clearly

holds true for d ≥ 2, but, hereafter, we are restricting ourselves to the d = 2125

case.

It is well known that the solution of the Freedholm integral equation in the

discrete domain leads to the following system of linear equations:

Kf = y, (3)

where f = {fi}ni=1 ∈ Rn is a discrete representation of the object to be imaged,

y = {yj}mj=1 ∈ Rm is a vector of the measured data and K ∈ Rm×n is the

system matrix, which describes the measurement process.

Hence, the CT reconstruction problem consists in recovering the object f ∈130

Rn (i.e., the discrete representation of the density or attenuation function f)

from the measured data y ∈ Rm (corresponding to the set of projections y(θ, τ)),

by somehow “inverting” the system matrix K ∈ Rm×n. In ROI tomography, we

are still interested in reconstructing f ∈ Rn, but measured data are truncated,

that is, projections are available only in a certain region, the so-called ROI, of135

the object. In practice, in ROI CT we only have the truncated sinogram yROI,
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that is, a “portion” of the full sinogram y that comprise only those measured

data corresponding to the rays that pass through the ROI. It is well known

that the full data CT reconstruction problem is ill-posed [3]; the truncation of

data makes the ill-posedness even more severe. So, we look for a regularization140

approach that formulates the ROI reconstruction problem as a minimization

problem with a convex, nonsmooth objective function.

To this end, the ROI reconstruction problem can be seen as an extrapolation

problem, following the same idea presented in [34, 35, 21]:

y = My + (1m −M)y = yROI + yEXT, (4)

where we set yROI = My, being M ∈ Rm×m a mask identifying the ROI in

the sinogram space, and 1m denotes the identity matrix of size m. In detail,

M ∈ Rm×m is a diagonal matrix, with either 0 or 1 as entries, whose role is

to select those rows of the system matrix K corresponding to the rays meeting

the ROI. In practice, equation (4) suggests to understand the full sinogram y

as split in a known portion of the sinogram (i.e., yROI) and an unknown (or

ignored) portion of the sinogram (i.e., yEXT). This gives two equation:

yROI = My = MKf , (5)

yEXT = (1m −M)y = (1m −M)Kf . (6)

Equation (5) defines a constraint inside the ROI, forcing fidelity to the actual

measured data, whilst equation (6) imposes a constraint on the extrapolation

scheme, asking for consistency with the (hypothetical) full measured data, to145

preserve the overlapping principle of the CT measurements.

Equations (5)–(6) are the key to formulate the objective function for the

solution of the ROI reconstruction problem. In particular, equation (5) works

as a data mismatch term which measures the difference between the model

and the data, while equation (6) works as a regularization term. Basically, we

consider a function of the form

min
f∈Rn

Γ0(f) + Γ1(f) (7)
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where Γ0(·) is the data mismatch term, and Γ1(·) includes a priori information

on the solution. In detail, the expression for Γ0(·) depends on the nature of the

noise. A suitable model for the CT measurements is Poisson or photon noise. By

using a maximum likelihood approach [5], the presence of Poisson noise leads to

a data mismatch term expressed by means of the Kullback-Leibler divergence,

namely:

Γ0(f) =

m∑
i=1

{
(yROI)i log

(
(yROI)i

(MKf)i + (b)i

)
+ (MKf)i + (b)i − (yROI)i

}
,

where b is a positive constant modeling the background radiation. As for Γ1(·),

the regularization term should account for the ill-posedness of the ROI CT

problem by incorporating a priori information. In ROI CT, ill-posedness is

given partly by the truncated data, and partly by the presence of noise. A

well-known approach for denoising is to impose sparsity, in the sense of the

`1-norm, on either the desired solution or in the domain of a certain transform

(for instance, wavelet or shearlet). Roughly, the use of the `1-norm leads to

the suppression of many small coefficients in favor of few large coefficients: this

allows to separate the structural components of the object from the noise, and

this essentially corresponds to denoising. For this reason, in our approach we

exploit sparsity by incorporating in the objective function a `1-norm term of the

shearlets coefficients on the full sinogram y expressed by means of equation (6),

that is:

y = (1m −M)Kf + yROI.

By doing this, we are applying regularization directly to the missing data, and

this is consistent with the aim of extrapolation. The reason for choosing shear-

lets, over many other possible sparsifying transforms, is that shearlets are espe-

cially effective in the recovery of information associated with edges and other150

singularities, since the localization and directional properties of shearlets al-

low to detect finer structures (see Appendix A). This is potentially relevant in

CT-like applications, since point-like structures in the object domain map onto

sine-shaped curvilinear structures in the sinogram domain, and it is even more
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essential for real data which generally exhibit a diversified texture, with many155

different structures, that usually do not occur in (piece-wise constant) phantom

data.

If Ψ denotes the shearlet matrix underlying a suitable shearlet transform,

our sparsity-promoting regularization term is:

‖Ψy‖1 = ‖Ψ((1m −M)Kf + yROI)‖1 (8)

In Γ1(·), we shall consider also the prior given by the physics of the problem, that

is, the knowledge of the nonnegativity of the solution given that f is understood

as a measure of attenuation and, hence, measures the incoming “number of

photons”. Notice that, when the maximum pixel value Imax of the object is

known (for instance, in case of phantom data), a box constraint of the form

0 ≤ f ≤ Imax can be considered in place of the nonnegativity constraint, where

the inequalities are meant component-wise. In this paper, we only consider

the case of the nonnegativity constraint, for both phantom and real data. If

we denote by Ω the feasible region, Γ1(f) shall incorporate also the indicator

function ιΩ(f) of the feasible set:

ΓSH1 (f) = µ ‖Ψ((1m −M)Kf + yROI)‖1 + ιΩ(f).

Thus, our optimization condition for ROI CT reconstruction problem reads as:

argmin
f∈Rn

Γ(f) where

Γ(f) = Γ0(f) + µ ‖Ψ((1m −M)Kf + yROI)‖1 + ιΩ(f),

(9)

where µ denotes the regularization parameter.

In the numerical experimentation presented in Section 4, we consider another

form of a priori information on the solution, which is widely used in medical

imaging: smoothed total variation (sTV) [36]. Similarly to shearlets, the TV

operator can be understood as a sparsifying transformation, which transforms

the original image into an edge map. Our aim is to investigate if using the

`1-norm regularization approach is superior to the sTV minimization, and how
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this depends on the nature of the data (i.e., synthetic or real). The nonnegative

sTV regularization term reads as:

ΓsTV1 (f) = ρ TVδ(f) + ιΩ(f) = ρ

n∑
i=1

∥∥∥∥∥
∇if

δ

∥∥∥∥∥
2

+ ιΩ(f)

where δ is the smoothing parameter and ∇i ∈ R2×n is the i-th submatrix of the

discrete gradient operator ∇:

(∇f)i = ∇if .

Hence, our proposed approach in (9) will be tested against the following opti-

mization condition:

argmin
f∈Rn

Γ(f) where

Γ(f) = Γ0(f) + ρ TVδ(f) + ιΩ(f),

(10)

where ρ is the regularization parameter. The reason for preferring sTV over the

unsmoothed version of TV (i.e., δ = 0) is that sTV not only works as an edge160

preserving functional, but the presence of δ also incorporates some information

about the smoothness of the object inner surface [37, 38].

3. A forward-backward method for the ROI tomography problem

Both the optimization problems (9) and (10) consist in the minimization

of functionals given by the sum of a differentiable term and a convex, non-165

differentiable one. The class of forward-backward methods is especially tailored

for handling such kind of problems since they exploit the structure of the ob-

jective function. Also, they are easy to implement and have well-studied con-

vergence properties [39, 40, 41, 42]. In this paper, we take into account a very

recently proposed forward-backward scheme called Variable Metric Inexact Line170

search Algorithm (VMILA) [9], which is outlined in Algorithm 1.

The general framework of VMILA applies to problems of the form

min
f∈Rn

Γ(f) = Γ0(f) + Γ1(f), (12)
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Algorithm 1 Variable Metric Inexact Line search Algorithm

Choose 0 < αmin ≤ αmax, set β, γ ∈ (0, 1), η ∈ (0, 1] and f (0) ∈ Ω.

for k = 0, 1, 2, . . . do

Step 1. Choose the steplength αk ∈ [αmin, αmax] and the scaling matrix

Dk ∈ DLk
;

Step 2. Proximal approximation: compute an approximation of the prox-

imal point

f̃
(k)
≈ proxDk

αkΓ1
(f (k) − αkD−1

k ∇Γ0(f (k))), (11)

and the corresponding value h(k)(f̃
(k)

) with formula (13b).

Step 3. Compute the descent direction d(k) = f̃
(k)
− f (k);

Step 4. Generalized Armijo line search:

if Γ(f (k) + µkd
(k)) ≤ Γ(f (k)) + βµkh

(k)(f̃
(k)

) then

go to Step 5.

else

µk = γµk and go to Step 4.

end if

Step 5. Set f (k+1) = f (k) + µk d
(k).

end for

where Γ1 is a proper, convex, lower semicontinuous function and Γ0 is contin-

uously differentiable on an open subset Ω0 ⊂ Rn containing dom(Γ1) = {f ∈

Rn : Γ1(f) < +∞}.

The VMILA iteration is based on an approximate evaluation of the proximity

operator of the function Γ1, which is defined as

proxD
αΓ1

(·) = argmin
f∈Rn

Γ1(f) +
1

2α
‖f − ·‖2D,

where α is a positive parameter, D is a symmetric positive definite matrix and

‖ · ‖D denotes the norm induced by the matrix D, i.e., ‖f‖D = fTDf . Notice

that the proximity operator is a generalization of the projection operator onto

a convex set Ω, which is recovered when Γ1 is the indicator function related to
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it, namely:

ιΩ(f) =

 0 if f ∈ Ω

+∞ otherwise

In general, given a step size αk > 0 and a symmetric positive definite matrix Dk,

each step of a forward-backward method requires the computation of the point

proxDk

αkΓ1
(f (k) − αkD−1

k ∇Γ0(f (k))), which, by definition, is the unique solution

of the minimization problem:

min
f∈Rn

h(k)(f) (13a)

where the (strongly convex) function h(k)(f) is defined as

h(k)(f) = ∇Γ0(f (k))T (f − f (k)) +
1

2αk
‖f − f (k)‖2Dk

+ Γ1(f)−Γ1(f (k)) (13b)

The solution of problem (13) is not always available in explicit form and, to

overcome this drawback, inexact methods, such as VMILA, actually compute

an approximation of it, which here and in the following is denoted by f̃
(k)

.

Then, given a line search parameter µk ∈ [0, 1], the (k + 1)-th iterate, with

k = 0, 1, 2, . . ., is computed as

f (k+1) = f (k) + µk

(
f̃

(k)
− f (k)

)
. (14)

The update formula (14) describes a large class of forward-backward meth-

ods [39, 40, 41, 42], which differ from each other with respect to the meaning

and choice of the parameters µk, αk, Dk and on the way f̃
(k)

is computed.

In the VMILA framework, the steplength µk is adaptively computed by an175

Armijo-like backtracking procedure to guarantee the sufficient decrease of the

objective function, which is crucial for the convergence of the whole scheme,

while the step size αk and the scaling matrix Dk should be considered as almost

free parameters to be tuned in order to improve the practical performances

of the method. In our implementation of the algorithm, we adopt the setting180

suggested in [43, 9]: we select αk through an adaptive strategy based on the

Barzilai-Borwein updating rules [10, 11, 12] and Dk according to a split-gradient

idea [13, 5] based on the decomposition of the gradient of Γ0 into a positive and
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a negative part. This setting guarantees both theoretical convergence and good

practical performances.185

One of the strengths of VMILA, with respect to other state-of-the-art forward-

backward methods, is the possibility of inexactly computing the proximal step

which characterizes the iterative updating rule, without compromising the con-

vergence of the iterates to a minimizer. Indeed, in many common situations,

including the ROI CT problem (9), the proximity operator in (11) cannot be190

computed in a closed form.

In [9], the authors devise an implementable procedure where an admissible

approximation of the proximal point is computed in an iterative manner. In

practice, when Γ1 is the sum of composite functions (possibly with one term

only), i.e., Γ1 =
∑
j gj◦Aj , where gj are convex, lower semicontinuous functions195

with an easy-to-compute proximal operator and Aj are linear operators, this

procedure consists in 1) restating the minimization problem involved in (13) in

dual form; 2) applying a well behaving iterative optimization method to the

dual problem; 3) stopping the dual iterations when the difference between the

primal and the dual function is below a certain tolerance. This procedure is well200

defined, easily implementable and leads to a double loop algorithm where the

inner iterations are nested at Step 2 of Algorithm 1. When the inner tolerance

parameter is suitably defined, the resulting inexact proximal point f̃
(k)

yields

a descent direction at Step 3 so that the line search loop at Step 4 is well posed

and the whole scheme is convergent (we refer to [9] for more details).205

For the special case of problem (9), we have A = (AT
1 ,A

T
2 )T being Γ1(f) =

g1(A1f) + g2(A2f) where g1 = ‖ · ‖1, g2 = ιΩ, with Ω = {f ∈ Rn : x ≥ 0},

and A1 = µΨ(1m −M)K, A2 = 1n. In this case, the dual of (13) corresponds

to a smooth minimization problem with box constraints. Since the projection

onto the constraints set is easy to compute, the dual problem can be addressed210

by the Scaled Gradient Projection method (SGP) [44, 43], which, actually, is a

special instance of VMILA with exact computation of the proximal (projection)

operator and applies to any problem of the form (12) when Γ1 = ιΩ, being

Ω ⊆ Rn a closed convex set.
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Instead, when the objective function reads as (10), the nonsmooth term of215

the objective function only includes the indicator function on the feasible set Ω

(i.e., Γ1 = ιΩ). In this case, no inner loop is required and VMILA reduces to

SGP.

4. Numerical illustration

In this Section, we present numerical results for our ROI reconstruction220

approach using both synthetic and real data, in the framework of 2D fan-beam

geometry. We tested both the goodness of our model and the performance

provided by VMILA. As regards the former, we compare our objective function

(i.e., equation (9)) against the sTV-based approach presented in Section 2 (i.e.,

equation (10)), while for the latter we assess the quality of the reconstructed225

images by using the algorithm proposed by Chambolle and Pock (CP) in [26] as

a benchmark. The CP method belongs to the class of primal-dual algorithms

and it can be applied to problems (9) and (10) without any inner loop, but by

exploiting the easy-to-compute proximity operators of the duals of the `1 norm

and/or of the indicator function of the nonnegative orthant.230

All the algorithms were implemented in Matlab 8.1.0 and the experiments

were performed on a dual CPU server, equipped with a single node of two 6-

core Intel Xeon X5690 at 3.46GHz, 188 GB DDR3 RAM memory and up to 12

TB of disk storage. The XEON HyperThreading technology allows each core

to run 2 simultaneous threads. Matlab built-in multithreading functions are235

capable of exploiting the computational power of the server. Moreover the queue

manager of the server allowed all reconstruction jobs to be run with exactly the

same machine configuration (16 threads), each one with exclusive access to the

required cores and RAM. This ensured performances comparability, given that

intra-node latency is negligible and that the heaviest operations are the same240

in all cases (see later in this Section).

For synthetic data (see Section 4.1), all numerical results were compared

against two state-of-the-art figures of merit, namely the peak-signal-to-noise
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ratio (PSNR) and the relative error. We recall that the PSNR, measured in dB,

is defined as follows:

PSNR = 20 log

(
MPV

eMSE

)
where MPV is the maximum pixel value and eMSE is the mean squared error.

We stress that both PSNR and relative error were evaluated inside the ROI

only. This is consistent with the motivation of ROI CT, which aims to recover

the image inside the ROI only.245

Concerning the setting of VMILA parameters (we refer to the original pa-

per [9] for the notations), the steplength αk was constrained in the interval

[αmin, αmax] with αmin = 10−5 and αmax = 105, and the initial threshold L for

the scaling matrix Dk was set equal to 1010. For the line search parameters we

used γ = 0.4, β = 10−4, and κ = 1. The parameter η ∈ (0, 1] that controls the

stopping criterion for the inner loop was chosen equal to 10−5. This choice is

a good balance between convergence speed and computational cost. As a suit-

able criterion for stopping the (outer) iterations of VMILA, we used the relative

difference between two consecutive iterates. Namely, we stopped the iterations

when
‖f (k) − f (k−1)‖2

‖f (k)‖2
≤ τit (15)

where τit is a certain threshold and, like the error and PSNR calculations, the

lefthand side of (15) was evaluated inside the ROI only. A rule of thumb for

choosing τit does not exist: we found τit = 10−4 yielding satisfactory recon-

structions. Concerning real data (see Section 4.2), figures of merit estimates

are not available, since the original data sets lacks a comparable ground truth.250

The goodness of the reconstruction is still retrievable on a qualitative basis, by

looking at the ground truth obtained by reconstructing the whole acquired real

sinogram, which, on the contrary, is available in the original data set (see Sec-

tion 4.2, Figures 8 and 12). For the lotus root, a high resolution reconstruction

from 360 angles and sized 1500 × 1500 pixels is available, while our test image255

is sized 256× 256 pixels. For the walnut, a high resolution reconstruction from

1200 angles and sized 2296× 2296 pixels is available, which we use as reference
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for our test image sized 328× 328. For real data, we use as stopping criterion a

maximum number τit of (external) iterations. By studying the behavior of the

objective function, we found τit = 100 yielding reliable reconstructions for both260

real data sets.

Lastly, the implementation of VMILA requires an expression for the matrix

underlying the transform. To this end, we exploited a Spot-compliant1 routine

kindly provided by Wang-Q Lim, co-author of the ShearLab package [45] avail-

able at www.shearlab.org. In details, the number of scales for the shearlet265

transform has been set equal to 4 and the number of directions across the scales

is set to (8, 8, 16, 16).

The choice of the regularization parameters µ, ρ is also crucial for a good

restoration result. It is well known that a general analytical method is not

available (see, for instance, [3, 46]). Hence, to assess both qualitatively and270

quantitatively the goodness of the reconstructions, we sampled the values 10`,

with ` = −5,−4,−3, . . . , 4, for the regularization parameter µ, and the values

10−3, 10−2, 10−1, 1, 10 for the sTV parameter ρ, for both synthetic and real

data. The sTV smooth parameter δ was set equal to 10−4.

The proposed method imply the use of an iterative algorithm with an initial275

guess f (0). As first estimate for f (0), we choose to use the vector with all entries

equal to 0.5. We remark that there is a vast literature about the influence of the

choice of the initial guess for diverse classes of algorithms, see for instance [47].

However, as far as VMILA concerns, the line search strategy ensures global

convergence. For the initial guess of VMILA inner loop, at the first outer iterate280

it is chosen to be the vector of all zeros, while at all successive iterates a “warm

start” is exploited, namely the inner solver is initialized with the dual solution

computed at the previous iteration.

The memory requirements for VMILA are sufficiently inexpensive, and clearly

1Spot – A Linear-Operator Toolbox is an object-oriented Matlab package by Ewout van

den Berg and Michael P. Friedlander implementing linear operators. The latest release of Spot

is available at the GitHub page https://github.com/mpf/spot.
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Figure 2: Synthetic data (Shepp-Logan phantom): noise-free full sinogram (left), noisy sino-

gram (center) and their difference (right), which reveals the amount of noise.

depend on the object size and the acquisition device. Each iterations of VMILA285

requires to store approximatively O
(
m
√
n
)
+O(n) floating point numbers, where

O
(
m
√
n
)

accounts for the system matrix (which can clearly be stored in a sparse

format) and O(n) is the memory requirement for the inner loop of VMILA (per-

formed by SGP). The shearlet transform is implemented as a Spot operator and

its memory requirements are negligible with respect to O
(
m
√
n
)
. Notice that290

in real applications m is of the order of hundreds of thousands and
√
n of few

millions.

Concerning the computational cost, in our implementation each CP iteration

requires one CT operator evaluation plus one evaluation of the linear operator

involved in the regularization term (the discrete gradient in the case of TV, or295

the shearlet transform for the 1-norm). In the case of VMILA, one CT operator

evaluation is required in each outer iteration, while each inner iteration requires

one evaluation of the linear operator related to the regularization term.

4.1. Synthetic data

We use a synthetic data set known as modified Shepp-Logan phantom, sized300

N ×N pixels with N = 128. It is available, for instance, in the Matlab Image

Processing toolbox. All phantom data are simulated by using the geometry of a

micro-CT scanner used for real measurements. The 2D fan-beam data are sim-

ulated over 182 uniformly spaced angles in [0, 2π]. The detector consists of 130

elements with a pixel pitch of 0.8 mm. The distance between the X-ray tube and305
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the detector is set to 291.20 mm and the radius of rotation is 115.84 mm. The

detector is offset by 1.5 pixels. The matrix K that represents a discretization

of the 2D fan-beam geometry, according to the above specifications, is com-

puted by using the efficient vectorized implementation of the distance-driven

technique [48].310

The results reported in the following covers concentric ROI disks placed off-

center with respect to the field of view: the center is located in cROI = (64, 80)

(in pixels) and the decreasing ROI radii considered are rROI = 0.5N, 0.3N, 0.15N .

When rROI = 0.3N, 0.15N the ROI is fully inside the object being imaged,

whilst when rROI = 0.5N the ROI radius exceeds the object along one coordi-315

nate axis. Here, the Shepp-Logan phantom is assumed to be placed in the first

quadrant of the Cartesian coordinate system with the image lower left corner at

the origin. Truncated projection data are obtained by discarding the samples

outside the ROI projections since, as outlined in Section 2, this corresponds to

select only the contribution of those rays meeting the ROI. Here, we assume that320

the noise that corrupts the projection data is described by a Poisson process,

with mean (and variance) equal to ν·e−ynf , where ν = 104 is the amount of Pois-

son noise and ynf is the noise-free sinogram (see Figure 2), and a background

radiation b = 10−12.

Table 1, with the corresponding image reconstructions collected in Figure 3325

(where the ROI is identified with a dashed white circle), summaries the “op-

timal” results with the corresponding values of µ and ρ (param), the running

times (sec) and number of iteration (iter). Here, “optimal” means that for the

reported values of µ and ρ we get the minimum ROI relative error and maximum

ROI PSNR.330

The results reported in Table 1 show that the shearlet-based approach yields

better reconstruction with respect to sTV, except when rROI = 0.3N , for which

both approaches seem to perform equally well. This is essentially confirmed by

the corresponding images reported in Figure 3. For rROI = 0.5N (panels (a) and

(d)), the shearlet-based reconstruction (panel (a)) is significantly better: while335

the sTV reconstruction (panel (d)) is blurred to the extent that the smallest
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ROI ROI

rel err PSNR iter sec param

rROI = 0.5N
SH 0.24 26.09 45 9.84 µ = 10−2

sTV 0.45 20.50 35 2.51 ρ = 10−1

rROI = 0.3N
SH 0.19 34.89 86 33.71 µ = 10−4

sTV 0.16 36.67 141 9.50 ρ = 10−1

rROI = 0.15N
SH 0.19 43.02 83 29.26 µ = 10−3

sTV 0.50 34.71 79 5.47 ρ = 10−2

Table 1: Optimal results for the Shepp-Logan phantom (N = 128) with VMILA. Correspond-

ing reconstructed images are reported in Figure 3. SH = shearlets. sTV = smooth total

variation.

details are poorly detectable, in the shearlet-based reconstruction the edges

are sharper and all finer structures are sufficiently well reconstructed. When

rROI = 0.3N (panels (b) and (e)), both reconstructions are good, since all the

fundamental structures are well detected, and no artifacts are visible (even the340

transition from the ROI to the non-ROI is smooth). However, the shearlet-

based reconstruction (panel (b)) suffers from checkerboard effect, which results

in a under-estimation of the pixel intensity, confirming the results in Table 1.

When rROI = 0.15N (panels (c) and (f)) both reconstructions are sufficiently

accurate, despite the difference highlighted by the figures of merit. Anyhow,345

the shearlet-based one (panel (c)) suffers from a mild checkerboard effect and

the sTV one (panel (f)) exhibit a cupping artifact (i.e., the transition from the

ROI to the non-ROI is nonsmooth).

Finally, notice that, even if each rROI considered here selects a different

optimal value for the regularization parameters, this is not to be considered as350

a drawback of the approach proposed or as an unsuccessful outcome. Indeed,

every rROI leads to a different regularization problem, so there is no reason to

expect that different regularization problems select the same optimal value of

the regularization parameter. Anyhow, our approach appears more robust than

sTV with respect to the choice of the regularization parameter. Indeed, we355
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Figure 3: Optimal reconstructions for the Shepp-Logan phantom (N = 128) with VMILA,

corresponding to the results summarized in Table 1. First row: shearlets. Second row: sTV.

observe that, if one is willing to choose the same regularization parameter for

all the radii tested, one ends up with similar results by using the shearlet-based

approach. Namely, e.g., µ = 10−4 (which was optimal just for rROI = 0.3N)

yields rel. err.= 0.27, 0.19, 0.21 for rROI = 0.5N , 0.3N and 0.15N , respectively.

On the contrary, by using the sTV-based approach a good choice of ρ is crucial.360

Indeed, if we choose ρ = 10−2 (which was optimal just for rROI = 0.15N), we

get rel. err.= 0.51, 0.23, 0.50 for rROI = 0.5N , 0.3N and 0.15N , respectively.

These results are really encouraging, especially considering that, for piece-

wise constant images (like the Shepp-Logan phantom), sTV is a state-of-the-art

approach, meaning that in general sTV outperforms any other approach. Also,365

our approach produces accurate reconstructions as the ROI radii gets smaller:
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ROI ROI

rel err PSNR iter sec param

rROI = 0.5N
SH 0.17 28.88 931 31.63 µ = 10−2

sTV 0.15 30.03 984 25.85 ρ = 10−1

rROI = 0.3N
SH 0.18 27.33 822 31.80 µ = 10−4

sTV 0.15 29.00 699 17.01 ρ = 10−1

rROI = 0.15N
SH 0.91 18.54 1549 55.22 µ = 10−3

sTV 0.57 22.55 588 12.26 ρ = 10−2

Table 2: Optimal results for the Shepp-Logan phantom (N = 128) with CP. Corresponding

reconstructed images are reported in Figure 4. SH = shearlets. sTV = smooth total variation.

this is remarkable, since the aim of ROI CT is to achieve good reconstructions

for sufficiently small radii.

As benchmark comparison, we report in Figure 4 and Table 2 the ROI re-

constructions, and the corresponding values for the figures of merit, obtained370

with the CP algorithm. Retaining the notation of the original article [26], we

take L2 = 104, τ = 10−1 and σ = 0.99/(L2τ). In particular, the stopping

criterion is the same as for VMILA, i.e., the norm of the relative difference

between two successive iterates, with τit = 10−4. Roughly, the figures of merit

values reported in Table 2, in comparison with those in Table 1, show that375

for rROI = 0.15N VMILA definitively outperforms CP, for rROI = 0.3N the

results are the same, and for rROI = 0.5N CP outperforms VMILA. This is

somehow confirmed by the corresponding images reported in Figure 4. For

rROI = 0.15N , CP reconstructions are considerably worse, exhibiting cupping

artifacts and checkerboard effect (this is mostly evident by comparing panel380

(c) from Figures 3 and 4). When rROI = 0.3N , reconstructions appear almost

identical, whilst for rROI = 0.5N VMILA reconstructions are definitively more

blurred (especially by looking at panel (d) from Figures 3 and 4). In general,

notice that CP requires a significantly larger number of iteration to converge

and this results in a more demanding computational time. If we stop CP iter-385
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Figure 4: Optimal reconstructions for the Shepp-Logan phantom (N = 128) with CP, corre-

sponding to the results summarized in Table 2. First row: shearlets. Second row: sTV.

ations before convergence, the resulting reconstructions are usually too blurred

to be acceptable. To show this, in Figure 5 we detail the behaviour of our

shearlet-based approach in terms of the relative decrease of the ROI relative

error, for both VMILA and CP, at the beginning of the reconstruction process.

In the panels on the left column (panels (a), (c) and (e)) we report the plots390

of the ROI relative error against the time, stopped at 30 seconds: this is an

acceptable time for most clinical applications. The panels on the right column

(panels (b), (d) and (f)) refer to the iterations performed in the same time

interval, again with respect to the ROI relative error. The panels on the left

show that for the smallest ROI radius (panel (e)), VMILA outperforms CP: CP395

is far from convergence, while VMILA converged before 30 seconds and with
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Figure 5: Comparison between VMILA and CP for shearlet-based formulation, for the Shepp-

Logan phantom. Left: decrease of the ROI relative error with respect to the computational

time, stopped at 30 seconds. Right: decrease of the ROI relative error with respect to the

iterations performed in 30 seconds. First row: rROI = 0.5N (µ = 10−3). Second row:

rROI = 0.3N (µ = 10−4). Third row: rROI = 0.15N (µ = 10−3).
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Figure 6: Lotus root (filled with attenuating objects): 360-views sinogram (left), downsampled

180-views sinogram (middle), noise amount (right).

a lower ROI relative error. Concerning larger ROI radii, when rROI = 0.5N

(panel (a)), VMILA converges in less than 10 seconds, but with a slightly larger

ROI relative error than CP, which converges in a bit more than 30 seconds.

When rROI = 0.3N (panel (c)), both VMILA and CP do not converge in 30400

seconds and VMILA needs more time to get closer to the value of the ROI

relative error at convergence. What is remarkable is that, for all ROI radii, to

get to its error level at 30 seconds, VMILA requires a much smaller number

of iterations than CP. This is promising, because an optimized implementation

of our approach (which is not the goal of the present paper) could probably405

make VMILA strongly competitive with CP also for larger ROI radii. Lastly,

we stress that, even if CP outperforms VMILA when rROI = 0.5N , the focus of

this limited data application is to obtain stable and reliable reconstructions for

small radii. Finally, in general the setting of CP parameters is tricky but crucial

to end up with a reliable solution, and the parameters used in this Section were410

manually tuned to obtain a satisfactory performance of the algorithm. On the

contrary, VMILA is really stable with respect to the parameters choice and it

requires a minimum of user-supplied information to obtain good reconstructions

in a reasonable time.
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4.2. Real data415

We use two real data sets, both available at www.fips.fi/dataset and

measured in the X-ray Laboratory at the University of Helsinki (Finland). The

first one is the tomographic X-ray data set of a lotus root [7], sized N×N pixels

with N = 256; the second one, is the tomographic X-ray data set of a walnut [8],

sized N × N pixels with N = 328. In both cases, like for the data coming420

from real CT measurements, the noise that affected the acquisition is a Poisson

process [49], with ν ≈ 2.5·103 and a background radiation b = 10−12. The

estimate for ν was computed by averaging the mean of the incoming photons of

10 full size sinograms corresponding to the acquisition of an “air phantom” (see

Figures 6 and 7), i.e., there was no solid or liquid object during this preliminary425

acquisition, thus the acquisition detects noise only. Since the mean is quite

high, one could also consider a Gaussian model for the noise and still obtain

good reconstructions, but this is far from the aim of this paper and a Poisson

model is, in general, more accurate.

We recall that, for real data, figures of merit estimates are not available, since430

the original data sets lack a ground truth. Hence, in both cases, our discussion

is carried out on a qualitative basis by comparing our reconstructions with the

full 360-views reconstruction (see Figure 8) of the lotus root, and the full 1200-

views reconstruction (see Figure 12) of the walnut, each one available in the

corresponding data set.435

4.2.1. Lotus root

The peculiarity of this data set is that the holes of different sizes of the

lotus root have been filled with objects of different shapes, sizes, contrasts and,

most remarkably, attenuations: a pencil, a chalk, three pieces of ceramics, some

match-heads. Hence, this data set enjoys various structures and properties440

making it a challenging target, especially for limited data applications. All the

details regarding the geometry setup can be found in [7]. We only notice that, for

consistency with the synthetic data setup, we considered 180 uniformly spaced

angles over 2π, while the default data set is equipped with only 120 views. The
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Figure 7: Walnut: 1200-views sinogram (left), downsampled 120-views sinogram (middle),

noise amount (right).

180 views sinogram can be obtained from the full size sinogram with 360 views,445

available in the data set, by downsampling (see Figure 6). Like synthetic data,

truncated projection data are obtained by discarding the samples outside the

ROI projections. Similarly to the synthetic case, the results in the following

concern concentric ROI disks placed off-center with respect to the field of view,

namely cROI = (192, 160) (in pixels) and rROI = 0.6N, 0.4N, 0.2N . In this450

case, the ROI is not (always) fully inside the object being imaged: the aim was

to place the ROI center in such a way that, by decreasing the ROI radius, the

diverse image structures were preserved as much as possible.

In Figures 9 and 10 we report the reconstructions obtained with the shearlet-

based approach (9) and the sTV-based formulation (10), respectively. In each455

figure, every row collects reconstructions for a different value of the regulariza-

tion parameter, whilst every column corresponds to a different ROI radius rROI.

The ROI is identified with a dashed white circle.

In Figure 9 we report the reconstructions corresponding to µ = 10−4 in

the first row, µ = 10−3 in the second row and µ = 10−2 in the third row.460

We observe that the best reconstructions are the ones reported in the first row

(µ = 10−4). Indeed, for all radii in the first row the edges are sharp (e.g., see the

smallest holes of the lotus root), all the finest details are perfectly detectable

(including the match-heads in the up-left corner of panel (a)), the transition

between the ROI and the non-ROI is smooth and no cupping artifacts are visible.465
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Figure 8: The high-resolution filtered back-projection (FBP) reconstruction of the lotus root

(left) computed from 360 projections, available in the data set. On the right, an enhanced view

of the same reconstruction. In particular, notice that FBP reconstructs negative intensities

for the pixels: this is unfeasible since f is understood as a measure of incoming “number of

photons”.

In particular, notice that the vertical artifacts that are quite evident in the

FBP reconstruction in Figure 8, especially in the left and right borders of the

chalk (the biggest white circle slightly off-center in the middle), are not visible

in the shearlet-based reconstructions. Also, observe that the quality of the

reconstruction is not affected by the size of the ROI, i.e., as the ROI radius gets470

smaller, the sharpness of the details (including edges) remains excellent. The

reconstructions collected in the second and third rows of Figure 9 (corresponding

to µ = 10−3 and µ = 10−2, respectively) are still rather good, since all finer

details are detectable, there are no cupping artifacts and the different objects

stuffed in the lotus root are recognizable, but panels (f), (h) are mildly blurred475

and panel (i) is considerably blurred. Lastly, what is remarkable is that roughly

all the reconstructions collected in Figure 9 are good and sufficiently accurate,

even in the most blurred panel (i). Thus, for all the three values of µ considered

in Figure 9 reconstructions are reliable.

In Figure 10 we report the reconstructions corresponding to ρ = 10−2 in480

the first row, ρ = 10−1 in the second row and ρ = 1 in the third row. Among
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all these reconstructions, the best ones are those collected in the second row

(ρ = 10−1). At first, it may seems that these reconstructions (panels (d)-(f)

of Figure 10) are as good as those in panels (a)-(c) of Figure 9, since all the

different objects stuffed in the lotus root are detected, edges are sufficiently sharp485

and no cupping artifacts are visible. However, in sTV-based reconstructions

the vertical artifacts at the borders of the chalk are more visible than in the

shearlet-based reconstructions, even if not as much as in the FBP reconstruction.

Reconstructions in the first row of Figure 10 (corresponding to ρ = 10−2) are

acceptable but mildly blurred, especially panels (a) and (b). On the contrary,490

reconstructions in the third row (corresponding to ρ = 1) are unacceptable for

the smallest radii (i.e., rROI = 0.4N, 0.2N corresponding to panels (h)-(i)) and

the sTV-approach has to be considered as failed. Instead, panel (g) is even

slightly better than panel (a), since it is less blurred and edges are sharper.

Overall, only ρ = 10−1 yields acceptable reconstructions regardless of the ROI495

radius size, so a good choice of the sTV regularization parameter is essential.

As baseline comparison, we report in Figure 11 the ROI reconstructions

obtained with CP algorithm: for brevity, we report only the reconstructions

obtained with µ = 10−4 for the shearlet-based approach (first row of Figure 11),

and ρ = 10−2 for sTV (second row of Figure 11), i.e., the best ones obtained with500

VMILA. The parameter setting is the same of VMILA, where applicable, and

we take L2 = 106, τ = 10−1 and σ = 0.99/(L2τ). As for CP stopping criterion,

we found out that τit = 1000 iterations are necessary to retrieve approximatively

the same value of the objective function that yields the VMILA reconstructions

reported in Figures 9 and 10. Notice that, even if CP reconstructions can be505

considered as good as VMILA ones, it is undeniable that CP requires many

iterations to get the same accuracy in the reconstruction. Also, a closer look

(especially at rROI = 0.2N) reveals that in CP reconstructions the edges are

not as sharp as in VMILA reconstructions, and the inner texture of the lotus

root is not as flat as in VMILA (and, in general, as it is supposed to be).510
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4.2.2. Walnut

Similarly to the lotus root, the walnut exhibits interesting features. A walnut

generally consists of a dense, layered shell enclosing various structures with

different shapes and contrasts. Like a skull, the shell has reflection-symmetry,

while its edible part is non-convex enough to make it challenging to recover. In515

contrast to the setting of the lotus root, we used the 120 views default data set

to show that, even in a more challenging setting of sparser data, our approach

remains robust. All the details regarding the geometry setup can be found

in [8]. Similarly to the lotus root, the results in the following concern concentric

ROI disks placed off-center with respect to the field of view, namely cROI =520

(205, 164) (in pixels) and rROI = 0.5N, 0.3N, 0.2N , and truncated projection

data are obtained by discarding the samples outside the ROI projections. In

Figures 13 and 14 we report the reconstructions obtained with the shearlet-based

approach (9) and the sTV-based formulation (10), respectively.

In Figure 13 we report the reconstructions corresponding to µ = 10−5 in525

the first row, µ = 10−4 in the second row and µ = 10−3 in the third row.

Similarly to the lotus root, the best reconstructions are recovered with µ =

10−4 (second row): all the edges are sharp, all the finest details are perfectly

detectable and no cupping artifacts are visible. Notice that the quality of the

reconstruction, in terms of sharpness of the details, remains excellent as the530

ROI radius gets smaller. The reconstructions collected in the first and third

rows of Figure 13 (corresponding to µ = 10−5 and µ = 10−3, respectively) are

still quite good, especially for rROI = 0.5N, 0.3N : all finer details are perfectly

detectable and there are no cupping artifacts. Concerning the smaller ROI

radius rROI = 0.15N , in panel (c) the intensities are not correctly recovered and535

the reconstruction appears too dark, while panel (i) is rather blurred. However,

likewise to the lotus root, all the images collected in Figure 13 are sufficiently

accurate and reliable, even in the most blurred panel (i).

In Figure 14 we report the reconstructions corresponding to ρ = 10−3 in the

first row, ρ = 10−2 in the second row and ρ = 10−1 in the third row. From540
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Figure 14 it is clear that the sTV approach fails for the smallest ROI radius

rROI = 0.15N , regardless of the value of ρ. Concerning the largest radii rROI =

0.5N, 0.3N , the best reconstructions are obtained with ρ = 10−3 (first row):

edges are sufficiently sharp and no cupping artifacts are visible. Reconstructions

in the second row (corresponding to ρ = 10−2) are still acceptable but mildly545

blurred. As we saw in the case of the lotus root, a good choice of the sTV

regularization parameter is essential, but it still does not guarantee a successful

result for the smallest radius.

As benchmark comparison, we report in Figure 15 the reconstructions ob-

tained with CP algorithm. Again we focus only on those values of the regu-550

larization parameters that gave the best reconstructions with VMILA, namely

µ = 10−4 for the shearlet-based approach (first row of Figure 15) and ρ = 10−3

for sTV (second row of Figure 15). As CP parameters, we take L2 = 104,

τ = 10−1, σ = 0.99/(L2τ) and τit = 1000. From Figure 15 it is evident that

CP fails to reconstruct in the case of the smallest radius rROI = 0.15N and, for555

the largest radii rROI = 0.5N, 0.3N , even if reconstructions are good enough to

detect all finer details, noise is sufficiently suppressed and there are no cupping

artifacts, the intensities are not correctly recovered, especially for rROI = 0.3N .

4.2.3. Final remarks560

In conclusion, VMILA applied to the shearlet-based formulation yields nearly-

perfect reconstructions inside the ROI for at least two values of the regulariza-

tion parameter, while sTV-based reconstructions are more sensitive to the choice

of the regularization parameter (completely failing for the smallest radii with

a wrong choice for the regularization parameter, even if the same value results565

in a good reconstruction for some larger radius). For the lotus root, even for

a good choice of the sTV regularization parameter, reconstructions show some

visual artifacts at the borders of the objects stuffed in its holes. For the walnut,

the sTV approach seems to be even more unstable to the ROI size.

In terms of time, the sTV approach is clearly faster (about 40 seconds for570
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100 iterations for both the lotus root and the walnut) since it does not re-

quire the inner routine with VMILA. Instead, shearlet-based formulation with

VMILA requires for 100 iterations about 1120 seconds for the lotus root and

about 450 seconds for the walnut. In both cases, just 1 iteration of the inner

loop is required. Even if the computational cost to pay for using the shearlet-575

based formulation is larger than that for the sTV approach, the reconstructions

are in general better and more robust with respect to the choice of the regular-

ization parameter. Also, we stress that a competitive performance in terms of

times is far from the aim of this paper and the code could be further optimized

to get faster running time for the shearlet-based formulation. Concerning CP,580

many more iterations than with VMILA are required to (approximatively) get

the same value of the objective function that yields the VMILA reconstruc-

tions reported in Figures 9, 10, 13 and 10. This results in a more demanding

computational time: to run 1000 iterations of the shearlet-based formulation,

CP needs about 1020 seconds for the lotus root and about 500 seconds for the585

walnut, while to run 1000 iterations of the sTV approach requires about 150

seconds for both the lotus root and the walnut.

Lastly, observe that CP is quite sensitive to the setting of its parameters,

and it is difficult to devise the more convenient choice, while our approach (with

the parameters settings described at the beginning of this Section) seems to be590

always comparable to the best results obtained by CP in terms of objective func-

tion decrease, with respect to both the iteration number and the computational

time.

To show this, in Figure 16 we compare the behaviour of our shearlet-based

approach with CP in terms of the relative decrease of the objective function595

values, with respect to the computational time (in seconds), for all three data

set (the Shepp-Logan phantom in the first row, the lotus root data set in the

second, and the walnut in the third). The plots in Figure 16 reveal that the

behaviour of CP and, in turn, the quality of the corresponding reconstructions,

are strongly dependent on the parameters choices, for which there are no clear600

guidelines in the literature. On the contrary, VMILA, with the parameters set-
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tings described at the beginning of this Section, provides good reconstructions,

and its performances in terms of computational time are comparable to the ones

achieved by CP corresponding to the “best” parameters choice.

5. Conclusions605

In this paper, we presented a possible approach to compute a regularized so-

lution to the ROI CT problem from (Poisson) noisy data, without any assump-

tion on the ROI size or location. The objective function we propose combines

a data mismatch term expressed by means of the Kullback-Leibler divergence

with a nonsmooth sparsity-promoting regularizer, plus a prior given by the indi-610

cator function of a suitable feasible set. Here, sparsity is achieved by minimizing

on the `1-norm of the shearlet coefficients of the missing data. Our approach

is tested by using both synthetic and real data, and the goodness of our model

is compared against a sTV-based approach. The numerical assessment is car-

ried out via a very recently proposed iterative proximal-gradient minimization615

method, VMILA, and its performance is compared against CP algorithm.

The experiments show that, while for synthetic data shearlets and sTV per-

form similarly, on real data, shearlets reconstruct textures more accurately than

when sTV is used, since the localization and directional properties of shearlets

allow to detect finer structures. Also, while a good choice of the TV regular-620

ization parameter is crucial to end up with an acceptable reconstruction, the

shearlet-based regularizer provides good and reliable reconstruction for a range

of regularization parameters. This is quite remarkable considering that a rule of

thumb for choosing the regularization parameter does not exist. The strength

of our approach, specifically targeted at facing the ROI CT problem, relies in625

the use of the `1-norm combined with shearlets: the underlying philosophy is

denoising, since such a sparsifying approach leads to the suppression of many

small shearlet coefficients in favour of few large shearlet coefficients, that are

associated to edges. This allows to separate the structural components of the

image from the noise. Overall, the reported results demonstrate that accurate630
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and reliable ROI reconstructions can be obtained under challenging conditions

(i.e., real data with different shapes, sizes, contrasts and attenuations), and for

ROI with rather small radius and arbitrarily located.

Future work will be addressed especially to deepen the theoretical framework

and extend this approach to the 3D case, both for circular and helical geometries.635

Appendix A. Discrete shearlet transform

For readers’ convenience, we briefly recall here the main ideas about shear-

lets [50, 6]. For simplicity, we focus on the 2D setup.

Let φ ∈ L2(R2). A 2D affine family generated by φ is a collection of functions

of the form:{
φM,t(x) = |det(M) |− 1

2φ
(
M−1(x− t)

)
: M ∈ G ⊂ GL2(R), t ∈ R2

}
(A.1)

where GL2(R) is the group of invertible 2× 2 matrices. Shearlets are obtained

from (A.1) by considering the following “special” subset GSH of GL2(R):

GSH =

Ma,s =

 a s
√
a

0
√
a

 : a ∈ R+, s ∈ R

 .

In particular, the matrix Ma,s is obtained by multiplying the anisotropic dilation

matrix Aa with the shear matrix Ss:

Ma,s =

 a s
√
a

0
√
a

 =

 a 0

0
√
a

 1 s

0 1

 =: AaSs.

Hence, the continuous shearlet system SH(φ), with φ ∈ L2(R2), is given by

SH(φ) =

{
φa,s,t(x) = |det(Ma,s) |−

1
2φ
(
M−1
a,s (x− t)

)
: Ma,s ∈ GSH, t ∈ R2

}
,

and the associated continuous shearlet transform of a function f is the map

f −→ SH f(a, s, t) = 〈f, φa,s,t〉, a ∈ R+, s ∈ R, t ∈ R2.

Here, the variables a ∈ R+, s ∈ R and t ∈ R2 denote the scale, orientation and

the spatial location, respectively. Thus, shearlets are formed by dilating, shear-640

ing and translating an appropriate mother shearlet function φ ∈ L2(R2) [51].
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Roughly, shearlets are well localized waveforms whose orientation is controlled

by the shear parameter s and, as a→ 0, they become increasingly elongated.

Discrete shearlet systems are formally defined by sampling a continuous

shearlet systems on an appropriate discrete set. Notice that “discrete” refers to

the set of parameters and not to the domain. In this paper, we consider:{
φj,k,m(x) = 2

3
4 jφ
(
SkA2jx−m

)
: j, k ∈ Z,m ∈ Z2

}
with φ satisfying φ̂(ω) = φ̂1(ω1) φ̂2

(
ω2

ω1

)
, where ω = (ω1, ω2), φ̂1 is the Fourier

transform of a wavelet function with compact support away from the origin645

and φ̂2 is a compactly supported bump function with supp(φ̂2) ⊂ [−1, 1]. It

can be shown that, under suitable assumptions and a decomposition of the

Fourier domain into cones, the above system is a tight frame [50]. This indicates

that the decomposition is invertible and the transformation is numerically well-

conditioned. Notice that there exist several choices for φ1 and φ2 satisfying the650

above shearlet definition. One possible choice is to set φ1 to be a Lemariè–Meyer

wavelet and φ2 to be a spline bump function.

The appealing mathematical properties of shearlets (well-localization, parabolic

scaling to take care of the anisotropic structures, the highly directional sensitiv-

ity provided by the shearing parameter) are the reason why we choose them to655

approach the ROI CT problem. Real (and multidimensional) data, like the lotus

root considered in Section 4, are frequently dominated by anisotropic features.

Thanks to their properties, shearlets provide optimally sparse approximations of

images containing C2-edges [52], outperforming, conventional multiscale trans-

form, like wavelets. This makes shearlets the ideally suitable as sparsifying660

transform for our approach to the ROI CT problem.
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S. Vandenberghe, S. Staelens, Iterative ct reconstruction using shearlet-

based regularization, IEEE Trans. Nuclear Science 5 (2013) 3305–17.710

[16] E. Garduño, G. T. Herman, Computerized tomography with total variation

and with shearlets (2016). arXiv:1608.06668.

[17] K. Niinimaki, S. Siltanen, V. Kolehmainen, Bayesian multiresolution

method for local tomography in dental X-ray imaging, Physics in Medicine

and Biology 52 (2007) 6663–6678.715

[18] E. Klann, E. T. Quinto, R. Ramlau, Wavelet methods for a weighted spar-

sity penalty for region of interest tomography, Inverse Problems 31 (2015)

025001.

37

http://arxiv.org/abs/1608.06668


[19] M. Nassi, W. R. Brody, B. P. Medoff, A. Macovski, Iterative reconstruction-

reprojection: An algorithm for limited data cardiac-computed tomography,720

IEEE Transactions on Biomedical Engineering BME-29 (5) (1982) 333–341.

doi:10.1109/TBME.1982.324900.

[20] R. Azencott, B. Bodmann, T. Chowdhury, D. Labate, A. Sen, D. Vera,

Region-of-interest reconstructions from truncated cone-beam projections,

submitted.725

[21] B. Goossens, D. Labate, B. Bodmann, Region-of-interest computed tomog-

raphy by regularity-inducing convex optimization, Private communication.

[22] L. A. Shepp, Y. Vardi, Maximum likelihood reconstruction for emission

tomography, IEEE Trans Med Imaging 1 (1982) 113–122.

[23] G. T. Herman, A. Lent, Iterative reconstruction algorithms, Computers in730

Biology and Medicine 6 (1976) 273–294.

[24] M. R. Hestenes, E. Stiefel, Methods of Conjugate Gradients for solving

linear systems, Journal of Research of the National Bureau of Standards 6

(1952) 409–436.

[25] E. Sidky, D. N. Kraemer, E. G. Roth, C. Ullberg, I. S. Reiser, X. Pan, Anal-735

ysis of iterative region-of-interest image reconstruction for X-ray computed

tomography, Journal of Medical Imaging 1 (2014) 031007.

[26] A. Chambolle, T. Pock, A first-order primal-dual algorithm for convex

problems with applications to imaging, J. Math. Imaging Vis. 40 (2011)

120–145.740

[27] A. Faridani, D. V. Finch, E. L. Ritman, K. T. Smith, Local tomography

II, SIAM J. App. Math. 57 (1997) 1095–1127.

[28] E. T. Quinto, An antroduction to X-ray tomography and Radon transforms,

Proc. of Symposia in Appl. Math. 63 (2006) 1–23.

38

http://dx.doi.org/10.1109/TBME.1982.324900


[29] F. Noo, R. Clackdoyle, J. Pack, A two-step Hilbert transform method for745

2D image reconstruction, Physics in Medicine and Biology 49 (2004) 3903–

3923.

[30] R. Clackdoyle, F. Noo, J. Guo, J. Roberts, Quantitative reconstruction

from truncated projections in classical tomography, IEEE Trans. Nuclear

Science 51 (2004) 2570–2578.750

[31] B. Zhang, G. L. Zeng, Two dimensional iterative region of iterest recon-

struction from truncated projection data, Medical Physics 34 (3) (2007)

935–944.

[32] X. Jin, A. Katsevich, H. Yu, G. Wang, L. Li, Z. Chen, Interior tomography

with continuous singular value decomposition, IEEE Trans Med Imaging.755

31 (2012) 2108–2119.

[33] R. Clackdoyle, M. Defrise, Tomographic reconstruction in the 21st cen-

tury. region-of-interest reconstruction from incomplete data, IEEE Signal

Processing 60 (2010) 60–80.

[34] T. A. Bubba, D. Labate, G. Zanghirati, S. Bonettini, B. Goossens, Shearlet-760

based regularized ROI reconstruction in fan beam computed tomography,

in: SPIE Optics & Photonics, Wavelets And Applications XVI, Vol. 9597,

San Diego, CA, USA, 2015, p. 95970K.

[35] T. A. Bubba, F. Porta, G. Zanghirati, S. Bonettini, The ROI CT problem:

a shearlet-based regularization approach, Journal of Physics: Conference765

Series 756 (2016) 012009.

[36] C. R. Vogel, Computational methods for inverse problems, SIAM Philadel-

phia, 2002.

[37] R. Zanella, P. Boccacci, L. Zanni, M. Bertero, Efficient gradient projection

methods for edge-preserving removal of poisson noise, Inverse Problems770

25 (4) (2009) 045010.

39



[38] S. Bonettini, V. Ruggiero, An alternating extragradient method for to-

tal variation based image restoration from Poisson data, Inverse Problems

27 (6) (2011) 095001.

[39] P. Combettes, V. Wajs, Signal recovery by proximal forward-backward775

splitting, Multiscale Modeling and Simulation 4 (4) (2005) 1168–1200.

[40] P. Combettes, J.-C. Pesquet, Proximal splitting methods in signal process-

ing, Springer Optimization and Its Applications 49 (2011) 185–212.
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Figure 9: Optimal reconstructions for the lotus root (N = 256) with VMILA and the shearlet-

based approach. First row: µ = 10−4. Second row: µ = 10−3. Third row: µ = 10−2.
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Figure 10: Optimal reconstructions for the lotus root (N = 256) with VMILA and the sTV-

based approach. First row: ρ = 10−2. Second row: ρ = 10−1. Third row: ρ = 1.
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Figure 11: Optimal reconstructions for the lotus root (N = 256) with CP. First row: shearlets

(µ = 10−4). Second row: sTV (ρ = 10−1).
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Figure 12: The high-resolution FBP reconstruction of the walnut (left) computed from 1200

projections, available in the data set. On the right, an enhanced view of the same reconstruc-

tion. In particular, notice that FBP reconstructs negative intensities for the pixels: this is

unfeasible since f is understood as a measure of incoming “number of photons”.
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Figure 13: Optimal reconstructions for the walnut (N = 328) with VMILA and the shearlet-

based approach. First row: µ = 10−5. Second row: µ = 10−4. Third row: µ = 10−3.
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Figure 14: Optimal reconstructions for the walnut (N = 328) with VMILA and the sTV-based

approach. First row: ρ = 10−3. Second row: ρ = 10−2. Third row: ρ = 10−1.
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Figure 15: Optimal reconstructions for the walnut (N = 328) with CP. First row: shearlets

(µ = 10−4). Second row: sTV (ρ = 10−3).
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Figure 16: Comparison between VMILA and CP for shearlet-based formulation. First, third

and fifth rows: decrease of the objective function values versus the computational time. Sec-

ond, fourth and sixth rows: CP reconstructions for different values of τ , corresponding to the

plot in first, third and fifth rows, respectively. First and second rows: Shepp-Logan phan-

tom (µ = 10−4, rROI = 0.3N). Third and fourth rows: lotus root data set (µ = 10−4,

rROI = 0.4N). Fifth and sixth rows: walnut data set (µ = 10−4, rROI = 0.3N).

49


	Introduction
	A discrete ROI optimization problem
	A forward-backward method for the ROI tomography problem
	Numerical illustration
	Synthetic data
	Real data
	Lotus root
	Walnut
	Final remarks


	Conclusions
	Discrete shearlet transform

