CB2 cannabinoid receptor ligands are known to be therapeutically important for the treatment of numerous diseases. Recently, we have identified the heteroaryl-4-oxopyridine/7-oxopyrimidine derivatives as highly potent and selective CB2 receptor ligands, showing that the pharmakodynamics of the new compounds was controlled by the nature of the heterocycle core. In this paper we describe the synthesis and biological evaluation of 7-oxo-4-pentyl-4,7-dihydro-[1,2,4]triazolo[1,5-a]pyrimidine-6-carboxamide derivatives that led to the identification of novel CB2 receptor inverse agonists. Cyclic AMP experiments on CB2 receptors expressed in CHO cells revealed that introduction of structural modifications at position 2 of triazolopyrimidine template changes the functional activity from partial to inverse agonism. The molecular docking analysis of the novel structures is reported.

Synthesis and Structure Activity Relationship Investigation of Triazolo[1,5-a]pyrimidines as CB2 Cannabinoid Receptor Inverse Agonists

AGHAZADEH TABRIZI, Mojgan
Primo
;
BARALDI, Pier Giovanni
;
RUGGIERO, Emanuela;SAPONARO, Giulia;BARALDI, Stefania;RAVANI, Annalisa;VINCENZI, Fabrizio;BOREA, Pier Andrea;VARANI, Katia
Ultimo
2016

Abstract

CB2 cannabinoid receptor ligands are known to be therapeutically important for the treatment of numerous diseases. Recently, we have identified the heteroaryl-4-oxopyridine/7-oxopyrimidine derivatives as highly potent and selective CB2 receptor ligands, showing that the pharmakodynamics of the new compounds was controlled by the nature of the heterocycle core. In this paper we describe the synthesis and biological evaluation of 7-oxo-4-pentyl-4,7-dihydro-[1,2,4]triazolo[1,5-a]pyrimidine-6-carboxamide derivatives that led to the identification of novel CB2 receptor inverse agonists. Cyclic AMP experiments on CB2 receptors expressed in CHO cells revealed that introduction of structural modifications at position 2 of triazolopyrimidine template changes the functional activity from partial to inverse agonism. The molecular docking analysis of the novel structures is reported.
2016
AGHAZADEH TABRIZI, Mojgan; Baraldi, Pier Giovanni; Ruggiero, Emanuela; Saponaro, Giulia; Baraldi, Stefania; Poli, Giulio; Tuccinardi, Tiziano; Ravani,...espandi
File in questo prodotto:
File Dimensione Formato  
20. European Journal of Medicinal Chemistry 113 (2016) 11.pdf

solo gestori archivio

Descrizione: versione editoriale
Tipologia: Full text (versione editoriale)
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 1.16 MB
Formato Adobe PDF
1.16 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
VARANI 11392-2341003-postprint.pdf

accesso aperto

Descrizione: post print
Tipologia: Post-print
Licenza: PUBBLICO - Pubblico con Copyright
Dimensione 1.25 MB
Formato Adobe PDF
1.25 MB Adobe PDF Visualizza/Apri

I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/2341003
Citazioni
  • ???jsp.display-item.citation.pmc??? 8
  • Scopus 38
  • ???jsp.display-item.citation.isi??? 38
social impact