For improving the safety and the reliability of wind turbine installations, the earliest and fastest fault detection and isolation are highly required, since it could be used also for accommodation purpose. Modern wind turbines consist of several important subsystems, which can be affected by malfunctions regarding actuators, sensors, and components. From the turbine control point-of-view they are extremely important since provide the actuation signals, the main functions, as well as the measurements. In this paper, a fault diagnosis scheme based on the identification of fuzzy models is described, in order to detect and isolate these faults in the most efficient way, in order also to improve the energy cost, the production rate, and reduce the operation and maintenance operations. Fuzzy systems are proposed here since the model under investigation is nonlinear, whilst the wind speed measurement is uncertain since it depends on the rotor plane wind turbulence effects. These fuzzy models are described as Takagi-Sugeno prototypes, whose parameters are estimated from the wind turbine measurements. The fault diagnosis methodology is thus developed using these fuzzy models, which are exploited as residual generators. The wind turbine simulator is finally employed for the validation of the obtained performances.

Wind turbine simulator fault diagnosis via fuzzy modelling and identification techniques

SIMANI, Silvio
Primo
;
FARSONI, Saverio
Secondo
;
2015

Abstract

For improving the safety and the reliability of wind turbine installations, the earliest and fastest fault detection and isolation are highly required, since it could be used also for accommodation purpose. Modern wind turbines consist of several important subsystems, which can be affected by malfunctions regarding actuators, sensors, and components. From the turbine control point-of-view they are extremely important since provide the actuation signals, the main functions, as well as the measurements. In this paper, a fault diagnosis scheme based on the identification of fuzzy models is described, in order to detect and isolate these faults in the most efficient way, in order also to improve the energy cost, the production rate, and reduce the operation and maintenance operations. Fuzzy systems are proposed here since the model under investigation is nonlinear, whilst the wind speed measurement is uncertain since it depends on the rotor plane wind turbulence effects. These fuzzy models are described as Takagi-Sugeno prototypes, whose parameters are estimated from the wind turbine measurements. The fault diagnosis methodology is thus developed using these fuzzy models, which are exploited as residual generators. The wind turbine simulator is finally employed for the validation of the obtained performances.
2015
Simani, Silvio; Farsoni, Saverio; P., Castaldi
File in questo prodotto:
File Dimensione Formato  
1-s2.0-S2352467715000065-main.pdf

accesso aperto

Descrizione: versione post print
Tipologia: Post-print
Licenza: Creative commons
Dimensione 719.61 kB
Formato Adobe PDF
719.61 kB Adobe PDF Visualizza/Apri
2015.Simani_SEGN.pdf

solo gestori archivio

Descrizione: versione editoriale
Tipologia: Full text (versione editoriale)
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 869.57 kB
Formato Adobe PDF
869.57 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/2277015
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 28
  • ???jsp.display-item.citation.isi??? 20
social impact