
Accepted Manuscript

Wind turbine simulator fault diagnosis via fuzzy modelling and
identification techniques

Silvio Simani, Saverio Farsoni, Paolo Castaldi

PII: S2352-4677(15)00006-5
DOI: http://dx.doi.org/10.1016/j.segan.2014.12.001
Reference: SEGAN 5

To appear in: Sustainable Energy, Grids and Networks

Received date: 21 September 2014
Revised date: 18 December 2014
Accepted date: 23 December 2014

Please cite this article as: S. Simani, S. Farsoni, P. Castaldi, Wind turbine simulator fault
diagnosis via fuzzy modelling and identification techniques, Sustainable Energy, Grids and
Networks (2015), http://dx.doi.org/10.1016/j.segan.2014.12.001

This is a PDF file of an unedited manuscript that has been accepted for publication. As a
service to our customers we are providing this early version of the manuscript. The manuscript
will undergo copyediting, typesetting, and review of the resulting proof before it is published in
its final form. Please note that during the production process errors may be discovered which
could affect the content, and all legal disclaimers that apply to the journal pertain.

http://dx.doi.org/10.1016/j.segan.2014.12.001


Sustainable Energy, Grids and Networks 00 (2014) 1–13

SEGAN

Wind Turbine Simulator Fault Diagnosis via Fuzzy Modelling and
Identification Techniques

Silvio Simania,∗, Saverio Farsonia, Paolo Castaldib

aDepartment of Engineering, University of Ferrara, Ferrara, FE. 44122 Italy
bElectric and Informatics Department, University of Bologna, Bologna, Italy

Abstract

For improving the safety and the reliability of wind turbine installations, the earliest and fastest fault detection and isolation is highly
required, since it could be used also for accommodation purpose. Modern wind turbines consist of several important subsystems,
which can be affected by malfunctions regarding actuators, sensors, and components. From the turbine control point–of–view they
are extremely important since provide the actuation signals, the main functions, as well as the measurements. In this paper, a fault
diagnosis scheme based on the identification of fuzzy models is described, in order to detect and isolated these faults in the most
efficient way, in order also to improve the energy cost, the production rate, and reduce the operation and maintenance operations.
Fuzzy systems are proposed here since the model under investigation is nonlinear, whilst the wind speed measurement is uncertain
since it depends on the rotor plane wind turbulence effects. These fuzzy models are described as Takagi–Sugeno prototypes, whose
parameters are estimated from the wind turbine measurements. The fault diagnosis methodology is thus developed using these
fuzzy models, which are exploited as residual generators. The wind turbine simulator is finally employed for the validation of the
obtained performances.

c© 2014 Published by Elsevier Ltd.

Keywords: Fuzzy modelling and identification, fault detection and isolation, residual generators, sustainability and availability,
wind turbine benchmark.

1. Introduction

Modern industrial processes and controlled plants can exploit many technical resources comprising for example
information sciences, real–time solutions, advanced diagnosis and control, and computational intelligence . This paper
aims at reporting recent developments in the emerging areas of technology that find applications to factory advanced
control and diagnosis, such as wind turbine installations.

The control tools normally used for improving the complete behaviour of power plants can exploit both advanced
control schemes and complicated hardware solutions (for example, smart sensors, virtual actuators and processing
units). This high complexity degree can increase the failure rate, thus motivating the requirement of an automatic
scheme employed to quickly diagnose any abnormal working situations. These remarks raised a great interest in the
issues of Fault Detection and Isolation (FDI) for dynamic systems, and many model–based strategies were suggested,
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as described for example in [1, 2, 3, 4]. These methods rely on the mathematical description of the process under
diagnosis. However, the diagnosis principle can be based on a limited number of approaches, i.e.: the parity space
method, the state or output estimation, the Unknown Input Observer (UIO) principle, the Kalman Filters (KF) tool,
the Unknown Input Kalman Filters (UIKF) strategy, and the parameter identification approach. Moreover, techniques
relying on the artificial intelligence tools were also proposed [5]. Even if several linear and nonlinear methodologies
were proposed, robust and reliable (in one word, “sustainable”) FDI requires future researches.

It is worth noting that the accurate detection and isolation of faults can require a precise mathematical description
of the plant under diagnosis, which can be expressed as state–space or input–output formulation. In this way, after the
generation of the residual signals, their evaluation should guarantee the accurate fault detection, while avoiding the
indication of false alarms generated by disturbance, measurement errors, and the model–reality mismatch. However,
in actual conditions, the direct design and application of these FDI approaches can be difficult, motivated by the
complexity of the mathematical description involved. This unavoidable complexity cannot allow the direct use of
most of the linear FDI schemes, thus requiring a viable strategy for the direct application of the diagnosis schemes to
practical examples [3, 6].

With reference to wind turbines, as considered in this work, many papers considered the model–based FDI problem
[7, 8]. They showed that the more accurate the representation is at modelling the plant dynamics, the better its
behaviour will be in diagnosing abnormal working situations.

This paper proposes the use of the fuzzy modelling and identification tool with application to a wind turbine
benchmark for determining a straightforward solution of the FDI task. Two key issues of the proposed study are
remarked. First, the model complexity does not imply the need of a complex mathematical description. In fact, as
described here, the fuzzy modelling and identification tool can be exploited, thus avoiding purely nonlinear equations.
Moreover, the mathematical description of the residual generators is derived via an identification approach. On the
other hand, fuzzy prototypes as residual generators are designed, rather than purely nonlinear filters. This aspect
is quite important when the designed diagnosis tool is proposed for real–time solutions. Moreover, the diagnosis
scheme proposed in this study paper will be analysed in comparison with different approaches relying e.g. on banks
of UIO/KF, as described in [1, 3].

This work proposes the use of the fuzzy logic theory, since it seems a simple tool able to manage complicated and
unknown situations [9]. In particular, the residual generators applied to the wind turbine benchmark are derived as
Takagi–Sugeno (TS) fuzzy descriptions [10], whose parameters are estimated via a system identification strategy. The
efficacy of the suggested approaches are verified on the wind turbine benchmark measurements. Real–time simulations
comprising realistic fault and working situations are used to assess the efficacy of the suggested methodologies.

It is worth noting that, with respect to the previous work by one of the same authors [11], this paper extends the
results and improves the efficacy of the proposed solution. On the other hand, the identification approach, which is
extended to the fuzzy framework and applied to the wind turbine data in this study, was developed by one of the same
authors in [12]. Moreover, the design of the fuzzy estimators, which in this paper is exploited for the fault isolation
task, was described in a paper by the same author [13], but applied to a diesel engine system.

Finally, the manuscript has the structure below. Section 2 addresses the wind turbine model exploited in the work.
Section 3 describes the fuzzy modelling and identification tool used for FDI strategy development. The suggested
FDI scheme is considered in Section 4. The obtained results reported in Section 5 serve to highlight the efficacy
of the fuzzy tool, which is compared also with respect to a different FDI scheme. Section 6 concludes the work by
summarising the main points of the paper and suggesting some future research issues.

2. Wind Turbine Simulated Model

The paper considers a realistic wind turbine with horizontal axis and three blades that move the rotor shaft due to
the incoming wind flow. A gear–box is used for up–scaling the rotational speed of the power generator. More details
of this benchmark wind turbine are available in [7]. Figure 1 provides the diagram of this power plant.

The converter torque τg(t) and the turbine blade pitch angle βr(t) are the two control inputs used to regulate the
rotational speed ωr(t) and the generated power Pg(t). On the other hand, ωg(t) represents the generator speed, whilst
τg(t) is generator torque depending on the converter torque reference, τr(t). τaero(t) is the aerodynamic torque, whose
estimate is computed from the wind speed, v(t). However, this measurement is very uncertain, as shown e.g. in [7].
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Figure 1. Wind turbine schematic diagram.

The aerodynamic description is provided by Eq. 1:

τaero(t) =
ρ A Cp (βr(t), λ(t)) v3(t)

2ωr(t)
(1)

with the air density ρ, the turbine blade area A, the reference pitch angle βr(t), and the tip–speed ration λ(t), described
by Eq. 2:

λ(t) =
ωr(t) R

v(t)
(2)

where the rotor radius is R. With reference to Eq. 1, the term Cp describes the power coefficient, that is usually
represented by a two–dimensional map. Since the wind speed measurement v(t) is uncertain, it is assumed that τaero(t)
is affected by an error, which justifies the proposed approach of Section 3. The proposed scheme is able also to
manage the nonlinearity described by the expressions of Eqs. 1 and 2.

The drive–train is described as a one–body model and the complete hydraulic pitch system is modelled as a second
order transfer function [7]. Under these hypotheses, the overall continuous–time state–space model of the wind turbine
process is described by Eq. 3: 

ẋc(t) = fc (xc(t), u(t))

y(t) = xc(t)
(3)

where the available control inputs are represented by the vector u(t) =
[
β1 mi (t), β2 mi (t), β3 mi (t), τg(t)

]T
and the output

measurements are described by the vector y(t) = xc(t) =
[
Pg(t), ωg mi (t), ωr mi (t)

]T
, respectively. These measurements

are provided by two redundant sensor signals, with i = 1, 2. The static function fc (·) describes the nonlinear relation
between inputs and outputs. As described in Section 3, this nonlinear system will be approximated using the fuzzy
models estimated from N data sequences u(k) and y(k), where k = 1, 2, . . . N, are the sampling intervals.

With reference to the available redundant measurements from the benchmark, ωg mi and ωr mi represent the gener-
ator and rotor speed signals, respectively. β j mi (t) refers to the i–th measurement of the j–th blade pitch. The look–up
table Cp (β, λ) is selected for describing a high–fidelity wind turbine, which is the test–rig for the validation of the
proposed approach.

Finally, the measurement errors are described as Gaussian processes with statistics that represent realistic wind
turbine measurement sensors.

2.1. Fault Mode and Effect Analysis

The benchmark system considered in this paper simulates a number of realistic faults, described in Table 1, which
represent typical malfunctions of wind turbine installations. More details are available in [7].

In order to simplify the approach to the FDI task, the links between the fault situations reported above and the
considered wind turbine measurements were considered and analysed. Therefore, Table 2 summarises the effects of
the single faults on the inputs u(k) and outputs y(k) signals acquired from the simulated process.

The results reported in Table 2 were achieved by using the so–called Failure Mode& Effect Analysis (FMEA) [14].
In particular, Table 2 shows the most sensitive input u(k) or output y(k) measurement with reference to the considered
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Table 1. Fault scenario.
Fault Description

1 Position sensor 1 of the pitch 1: stuck value
2 Position sensor 2 of the pitch 2: scaled value
3 Position sensor 1 of the pitch 3: stuck value
4 Rotor speed sensor 1: stuck value
5 Rotor speed sensor 2 & generator

speed sensor 2: scaled values
6 Pitch 2 actuator: changed dynamics due to

air content in the hydraulic circuit
7 Pitch 3 actuator: changed dynamics due to

hydraulic circuit low pressure
8 Converter torque control: offset value
9 Drive train: changed dynamics

Table 2. Results of the FMEA approach.

Measurements Fault
β1 m1 (t) 1
β2 m2 (t) 2
β3 m2 (t) 3
β1 m2 (t) 4
β2 m1 (t) 5
ωr m1 (t) 6
ωr m2 (t) 7
Pg(t) 8
ωr m1 (t) 9

fault situations. Obviously, fault conditions different from the ones considered in this paper could probably require
different measurements. The approach is similar to the procedure shown in [13, 12], and it represents an important
key point, since it simplifies the fault isolation task, described in Section 4, and the set of measurement inputs and
outputs to be used for identification purpose, recalled in Section 3.

3. Fuzzy Modelling and Identification

This section addresses the derivation of the residual generators used for the wind turbine benchmark FDI. In
particular, the parameter estimation method summarised in the following enhances the development of the suggested
FDI scheme reported in Section 4.

The TS fuzzy prototype consists of a set of rules Ri, where the consequents are deterministic functions fi:

Ri : IF x is Ai THEN yi = fi
(
x
)

(4)

where i = 1, 2, . . . , K, with K the number of rules (or clusters). The term x describes the antecedent variables, whilst
yi represents the consequent outputs. The fuzzy set Ai of the i–th rule is represented with a (multivariable) membership
function, as described e.g. in [9].

The terms fi are properly parametric models, whose structure is fixed, and only its parameters can vary. These
functions exploited in this study have the affine form of Eq. 5:

yi = ai x + bi, (5)
4
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with ai and bi represent the model parameters. These models are proposed in this study as they are able to approximate
nonlinear systems with an arbitrary degree of accuracy [15].

When the degree of fulfilment of the antecedent λi(x) = µAi (x) is computed, the complete TS model is represented
with the expression:

y =

∑K
i=1 λi(x) yi∑K

i=1 λi(x)
(6)

where the membership functions λi are usually described with exponential functions [9]. Section 5 will show that
exponential membership functions represent the optimal choice for the accurate description of the fuzzy cluster shapes.

It is worth noting that the TS model of Eq. 4 can approximate a dynamic system if the consequents are de-
scribed as linear autoregressive models x(k) = [y(k − 1), · · · , y(k − n), u(k − 1), · · · , u(k − n)]T , and ai = [α(i)

1 , · · · ,
α(i)

n , δ(i)
1 , · · · , δ(i)

n ], with n is the memory (order) of the system. When the structure of Eq. 6 is considered, a method-
ology developed in [16] is exploited for the identification of both ai, bi, and the model order n.

On the other hand, the membership degrees λi of Eq. 6 are easily estimated using the fuzzy clustering procedure
described in [9]. In particular, this work proposes to use the fuzzy c–means clustering method developed in [9] and
already available as ready–to–use program. Moreover, this clustering tool choice is it can be directly integrated with
the estimation scheme suggested by one of the authors in [16]. The issue of the estimation of the optimal number of
clusters K was considered e.g. in in [16, 17].

The remainder of this section summarises the procedure for the estimation of the TS fuzzy model parameters from
noisy data.

Several techniques for the estimation of the model parameters ai and bi in Eq. 5 are available. However, if it is
assumed that errors affect both the regressor and the regressand variables, the optimal parameters are identified by
exploiting a scheme known as Errors–In–Variables (EIV) approach [18]. In fact, it can be considered here since it
leads to the minimisation of the estimation (or prediction) errors of the K independent local affine models [17].

To this aim, with reference to the i–th cluster (i = 1, · · · , K), the data matrices are built as follows:

X(i)
n =



y(k) xT
n (0) 1

y(k + 1) xT
n (1) 1

...
...

y(k + Ni − 1) xT
n (Ni − 1) 1


(7)

with n representing the number of delayed inputs and outputs, i.e. xn(h) = [y(h− 1), · · · , y(h− n), u(h− 1), · · · , u(h−
n)]T . Moreover:

Σ(i)
n =
(
X(i)

n

)T
X(i)

n . (8)

The problem of noise rejection is thus solved with the assumption that the measurement noise represented by the
signals ũ(k) and ỹ(k) are additive on the input and output measurements u∗(k) and y∗(k), with a number of sampling
instant k = 1, 2, · · · , N. In this situation, the positive–definite covariance matrix Σ(i)

n related to the data of the i–th
cluster can be described as the contribution of two addenda, that is Σ(i)

n = Σ
∗(i)
n +

¯̃Σn.
In particular, the covariance matrix ¯̃Σn has the form:

¯̃Σn = diag[ ¯̃σyIn+1, ¯̃σuIn, 0] ≥ 0. (9)

This identification problem is solved by computing the unknown noise variance values ¯̃σu and ¯̃σy that derive from Eq.
10:

Σ∗(i)n = Σ(i)
n − Σ̃n ≥ 0. (10)

which is a function of the unknowns σ̃u and σ̃y and Σ̃n = diag[σ̃yIn+1, σ̃uIn, 0]. Actually, the parameters of the local
affine model are estimated by determining the noise variances (σ̃u, σ̃y) ∈ Γ(i)

n+1 = 0 making the matrix Σ∗(i)n+1 close to

the double singular condition. However, in each i–th cluster, different noise variances ( ¯̃σ(i)
u , ¯̃σ(i)

y ) are assumed, and the
following expression is derived:

Σ∗(i)n = Σ(i)
n − Σ̃(i)

n ≥ 0 (11)
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with Σ̃(i)
n = diag[ ¯̃σ(i)

u In+1, ¯̃σ(i)
y In, 0]. The values ( ¯̃σ(i)

u , ¯̃σ(i)
y ) represent the additive noise variance values of the data in the

i–th cluster.
These assumptions mean that the following relations normally hold [19, 16]:

{
u(k) = u∗(k) + ũ(k)
y(k) = y∗(k) + ỹ(k)

(12)

where u∗(k) and y∗(k) represent the data without noise, whilst the noise signals ũ(k) and ỹ(k) do not depend on other
terms. Moreover, only the measurements u(k) and y(k) are available.

Finally, the matrices Σ̃(i)
n are derived and the model parameters for the i–th cluster are estimated via the expression:

(
Σ(i)

n − Σ̃(i)
n

)
a(i) = 0 (13)

with i = 1, . . . , K, and a number of K clusters. This identification approach will be exploited for the estimation of the
residual generators for FDI as described in Section 4.

4. Fault Diagnosis Strategy

The issue of the residual generator design for the FDI of the wind turbine model will be addressed in this section.
It wind turbine system is assumed to be modelled by the description of Eq. 3. u(k) and y(k) represent the controlled

inputs and the system outputs, respectively. The so–called model–reality mismatch in fault–free conditions can be
represented by the difference y(k) − ŷ(k). It could take into account measurement errors, parameter variations, and
disturbance. The reconstruction of the measurement y(k), i.e. ŷ(k) is obtained from an identified model of Eq. 6.
According to the description of Eq. 12, in practice, the signals u∗(k) and y∗(k) are acquired by measurement sensors,
which are inevitably affected by errors.

On the other hand, if the sensor dynamics are neglected, also faults affect the measurement process, which is thus
modelled as: {

u(k) = u∗(k) + fu(k)
y(k) = y∗(k) + fy(k)

(14)

where the terms fu(k) and fy(k) are additive fault signals.
Regarding the FDI task, this paper proposed to use TS fuzzy prototypes that are exploited for residual generators

from the redundant input and output signals u(k) and y(k). In this way, Fig. 2 shows that proper residual signals are
computed as:

r(k) = ŷ(k) − y(k). (15)

i.e. the different between the actual y(k) and its reconstruction ŷ(k).

Figure 2. The generation of the residual signals for FDI.

After the residual generation task, its evaluation is performed for detecting any fault occurrence, and for isolating
the faulty actuator or sensor signals.
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A direct geometric threshold comparison is proposed here to perform the fault detection stage. However, a detec-
tion delay can be present due to the fault modes summarised in Section 2.1. The fault detection logic is performed
according to the test described by Eqs. 16:



r̄ − δ σr ≤ r(k) ≤ r̄ + δ σr

if fault–free

r(k) < r̄ − δ σr or r(k) > r̄ + δ σr

if faulty

(16)

Actually, the residual r(k) is modelled as a stochastic variable, whose mean and variance values are estimated with the
relations of Eqs. 17: 

r̄ = 1
N

∑N
k=1 r(k)

σ2
r =

1
N

∑N
k=1 [r(k) − r̄]2

(17)

where the terms r̄ and σ2
r represents the mean and variance values of the fault–free residual samples, respectively. In

Eqs. 17 the sample number of r(k) is N. Note that r̄ and σ2
r could be exactly computed from the r(k) statistics, usually

unknown.
A robustness and reliability degree is introduced for distinguishing the normal and the faulty behaviours, which is

represented by the tolerance parameter δ (normally δ ≥ 2). A technique developed in [20] by one of the same authors
is applied here not to obtain conservative results. In particular, extensive simulations lead to the optimal value of δ
that minimises the false alarm probability and maximise the true detection rate. This topic will be further analysed in
Section 5.

The second issue concerns the fault isolation task, and it is achieved using a bank of residual generators properly
designed, which resembles the Generalised Observer Scheme (GOS) [1]. This task can be easily solved here as Section
2.1 showed how different faults fy(k) or fu(k) affect different input or output measurements. In this way, when the
outputs are fault–free, fu(k) possibly affecting one of the inputs u(k), is diagnosed with a bank of TS fuzzy estimators
of Eq. 6, as depicted in Fig. 3.

Figure 3. Scheme for the isolation of input faults.

The number of residual generators coincides with the number of faults to be diagnosed. Fig. 3 shows that the i–th
residual generator is fed by all but the i–th input measurement (or even more input signals, if necessary) and all output
measurements. The generated residual signal is thus sensitive to all but the i–th fault fu(k). These residual generators
are described by fuzzy TS models that are identified with the strategy reported in Section 3. In particular, the i–th
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fuzzy estimator that does not depend on the i–th input measurement is identified using y(k) and all but the i–th input
measurement ui(k) (i = 1, . . . , r).

On the other hand, when the input variables are fault–free, a fault fy(t) affecting the output measurement is diag-
nosed with an output fuzzy estimator bank, which are organised as in Fig. 3.

The efficacy of the overall fault isolation scheme is summarised in Table 3, where the so–called “fault signatures”
are summarised for the single fault case regarding each input–output signal. It is worth noting that the residuals ri of
Fig. 3 are indicated by rIi or rOi in Table 3 if they are generated by the bank for input or output sensor fault isolation,
respectively.

Table 3. Fault signatures.

u1 u2 . . . ur y1 y2 . . . ym

rI1 0 1 . . . 1 1 1 . . . 1
rI2 1 0 . . . 1 1 1 . . . 1
...

...
...

...
...

...
...

...
...

rIr 1 1 . . . 0 1 1 . . . 1
rO1 1 1 . . . 1 1 0 . . . 0
rO2 1 1 . . . 1 0 1 . . . 0
...

...
...

...
...

...
...

...
...

rOm 1 1 . . . 1 0 0 . . . 1

With reference to Table 3, an entry ‘1’ means that the residual is affected by the fault, whilst ‘0’ indicates that the
corresponding residual does not depend on the particular fault.

Finally, according to Table 3, it is worth noting that multiple faults are isolable, as only the i–th output signal
feeding the residual generator of rOi is affected by the fault on yi. On the other hand, multiple faults on the inputs ui

are not isolable as the residuals rIi depend on the faults affecting different inputs.

5. Simulated Results

The suggested identification and FDI approach was applied to the benchmark summarised in Section 2. The data
exploited for identification purpose were N = 440 × 103 samples acquired with a sampling rate of 100 Hz.

5.1. Wind Turbine Modelling and FDI

As addressed in Section 3, the data clustering algorithm with K = 4 fuzzy sets and n = 2 was employed. After
this fuzzy c–means clustering, the residual generator parameters ai and bi (i = 1, · · · , K) were identified according to
Section 3. In particular, Fig. 3, highlighted that the residual signals for FDI were computed using a bank of 5 TS fuzzy
estimators of Eq. 6. Table 2 suggested that this approach is able to diagnose the faults 1, 2, 3, 4, and 5, according
to Fig. 3. Moreover, by following again the results of Table 2, a bank of 4 fuzzy residual generators allowed the
diagnosis of the faults 6, 7, 8, and 9. Note that the membership functions βi used in Eq. 6 were estimated as Gaussian
functions, and derived from the same fuzzy c–means clustering approach [21].

In the following, the simulation results regarding the fault 4, i.e. fu(t), commencing at the instant t = 1500 s. are
shown. Moreover, the fault 8 corresponding to fy(t) is also presented. This fault is active between the time instants
3800 s. and 3900 s. These faults change the measurements u(t) and y(t), and therefore affect the residuals rIi (t)
generated by the residual generator of Eq. 6. These residual signals are compared with fixed thresholds according
to Eq. 16. As an example, Fig. 4 shows the fault–free y(k) (grey dashed line) and the faulty ŷ(k) (black continuous
line) signals regarding the ωr(t) measurement from the device of Fig. 2. On the other hand, Fig. 5 compares the
corresponding fault–free residual rIi (t) (grey dashed line) with the corresponding faulty one (black continuous line)
generated by the device of Fig. 3.

Fig. 5 also depicts the FDI thresholds of Eqs. 16 using dotted constant lines. In the following, a simulation
tool will be described for determining their values in order to minimise both the false alarm rate and the missed fault

8



S. Simani et al. / Sustainable Energy, Grids and Networks 00 (2014) 1–13 9

0 500 1000 1500 2000 2500 3000 3500 4000 4500
0

0.5

1

1.5

2

Time (s.)

w (k)
r
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Figure 4. The signals ŷ(k) and ŷ(k)for the fault 4.
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Figure 5. The residuals rIi (t) for the fault 4.

probability, as well as to maximise the correct FDI rates. Therefore, the diagnosis of the considered faults is correctly
performed if the corresponding residuals exceed these thresholds, as shown in Fig. 5.

With reference to the fault 8, i.e. fy(t) considered here, Fig. 6 shows the fault–free y(k) (grey dashed line) and the
faulty ŷ(k) (black continuous line) signals concerning the τg(t) measurement from the device of Fig. 2.

Time (s.)

Fault-free and faulty generator torque signals

t (k)
g

0 500 1000 1500 2000 2500 3000 3500 4000 4500
-1

0

1

2

3

4
x 10

4

Figure 6. The signals y(k) and ŷ(k) for the fault 8.

On the other hand, Fig. 7 depicts the fault–free residual with grey dashed line and the faulty residual in black
continuous line.

Also in this case, Fig. 7 reports also the FDI thresholds as dotted constant lines. They were optimally selected
in order to achieve the minimisation of the false alarm rate and the missed fault probability. Note that the obtained
results show the efficacy of the proposed FDI methodology relying on fuzzy residual generator functions identified
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Figure 7. The residual signals rOi (t) for the fault 8.

from uncertain measurements generated by the wind turbine benchmark.

5.2. FDI Comparisons

This section reports the comparison of the proposed strategy with respect to a different FDI approach. In particular,
the features of the FDI method developed in this study are analysed by considering an Unknown Input Kalman Filters
(UIKF) bank proposed e.g. in [1]. These UIKF devices used as residual generators were obtained from a linear state–
space description of the wind turbine benchmark, and designed as described e.g. in [22, 23]. However, the fuzzy
multiple–model identification was not exploited here. The achieved results are summarised in Table 4, which reports
if the considered faults are isolable and their FDI delays.

Table 4. FDI features of the UIKF bank.
Fault Fault Isolation FDI delay

1 Yes 15.98s.
2 Yes 95.89s.
3 Yes 20.61s.
4 Yes 10.34s.
5 Yes 91.14s.
6 No 55.71s.
7 No 55.65s.
8 No 18.98s.
9 No 12.68s.

With reference to the results of Table 4, note that model–based schemes should be used if accurate descriptions
of the process models are available. Moreover, the UIKF solution can manage the disturbance rejection problem by
exploiting complex design algorithms. However, Table 4 shows that the UIKF fault sensitivity is lower than the fuzzy
predictors. On the other hand, the advantage of the proposed fuzzy approach relies in its simplicity, even if a suitable
FDI threshold selection procedure can be required, as sketched in the remainder of this section.

5.3. FDI Performance Evaluation

To this aim, further simulation are shown for achieving the optimal performance and evaluating the features of
the proposed FDI scheme with reference to the model–reality mismatch and the measurement errors. Thus, extensive
experiments were realised by using the wind turbine simulator of Section 2 the Monte–Carlo tool. In fact, this
methodology is extremely powerful here since the FDI effectiveness is a function of the residual signals sensitivity
with respect to the model uncertainty and the measurement accuracy.

Section 4 highlighted that the input and output sequences u(k) and y(k) can be generated with arbitrary measure-
ment errors and noise levels. Therefore, the evaluation of the achievable performance is based on properly computed
indices, which were motivated by previous studies, see e.g. [24, 25]. They were evaluated using 1000 Monte–Carlo
simulations, and empirically computed as:
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• False Alarm Rate (FAR): the ratio between the number of wrongly detected faults and the number of simulated
faults;

• Missed Fault Rate (MFR): the ratio between the total number of missed faults and the total number of considered
faults;

• True FDI Rate, (TFDIR): the ratio between the number correctly diagnosed faults and the total number of
occurred faults;

• Mean FDI Delay, (MFDID): the average FDI delay interval.

Table 5 reports the evaluation of these indices when the fuzzy predictors proposed here are considered and the optimal
δ in Eq. 16 was selected.

Table 5. Monte–Carlo analysis with the fuzzy estimators.

Fault FAR MFR TFDIR MFDID δ

1 0.002 0.003 0.997 0.03s. 3.8
2 0.001 0.001 0.999 0.47s. 4.3
3 0.002 0.003 0.997 0.06s. 4.2
4 0.002 0.003 0.997 0.04s. 4.5
5 0.001 0.001 0.999 0.03s. 3.7
6 0.002 0.003 0.997 0.73s. 4.4
7 0.002 0.003 0.997 0.61s. 4.3
8 0.001 0.001 0.999 0.03s. 3.5
9 0.002 0.003 0.998 0.15s. 3.9

Table 5 highlights that the optimal values of δ in Eq. 16 allows to obtain FAR and MFR values lower than 0.3%,
with TFDIR larger than 99.7%, with minimal MFDID times. This aspect represents one of the key issues of the
suggested strategy, which demonstrates the efficacy of the Monte–Carlo tool exploited here for the evaluation of the
robustness issue of the suggested methodology. The simulation tests seem also able also to enhance the designer to
assess the reliability feature of designed FDI strategy when applied to more realistic examples.

5.4. Hardware–In–the–Loop Experiments

For the evaluation of more realistic working conditions, since real data from a wind turbine are not available, this
section summarises the results achieved using an Hardware In the Loop (HIL) setup. The procedure serves also to
highlight the performance of the designed software algorithms realising the proposed FDI strategy and working in
an real–time conditions when implemented on–board the wind turbine installation. Figure 8 describes the schematic
diagram of the HIL test–rig.

This test–rig was already presented in [11] but for control performance evaluation. The setup consists of an
industrial computer that provides the modelling of the wind turbine dynamics in the Labview R© environment. The
FDI strategy suggested in this study was implemented using the AWC 500 system with its on–board electronics and
interface circuits, which simulate the data acquisition and transmission processes. Table 6 summarises the results
obtained using this real–time laboratory setup.

Table 6 highlights the consistency of the almost real–time tests with respect to the results shown in Table 5 from
the Monte–Carlo simulation tool. In fact, note that the performances of Table 5 seem better than the HIL tests in Table
6. However, the numerical implementation precision of the on–board processor and the signal processing electronics
motivate possible deviations between the achieved results, which seem quite accurate when almost real–time wind
turbine experimental applications are experimented with.

Finally, note that the main challenge in this application area is to reduce the energy cost allowed by the presented
fault diagnosis strategy, without significantly increasing the cost of the installation operations. In this way, the cost
of the energy can be decreased by about 2%, mainly due to an increase in the system reliability. Furthermore, the
wind turbine availability will be increased correspondingly, by the features of the diagnosis scheme developed in the
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Figure 8. Main elements of the HIL test–bed.

Table 6. HIL laboratory setup FDI results.

Fault FAR MFR TFDIR MFDID δ

1 0.005 0.005 0.995 0.07s. 4.1
2 0.004 0.004 0.996 0.49s. 4.5
3 0.004 0.004 0.996 0.08s. 4.6
4 0.005 0.005 0.995 0.07s. 4.8
5 0.003 0.004 0.997 0.06s. 3.9
6 0.004 0.005 0.996 0.76s. 4.8
7 0.005 0.004 0.995 0.64s. 4.5
8 0.005 0.004 0.995 0.06s. 3.8
8 0.004 0.005 0.996 0.18s. 4.3

paper, which allows to achieve the objective of decreasing lost production factor by 10%. This thus leads to an impact
on increasing the attractiveness of the wind turbine technology by improve the cost and increasing reliability and
availability.

6. Conclusion

This paper suggested a viable approach for the development of a fault diagnosis scheme with application to a
wind turbine benchmark. The scheme relies on fuzzy prototypes that are identified from uncertain input–output data
measurements. The process under diagnosis is nonlinear and the acquired measurements are affected by errors due
to the wind speed uncertain knowledge. These identified fuzzy models were used for robust residual generation. The
estimation procedure used for deriving the fuzzy model parameters exploited a data fuzzy clustering tool and a system
identification algorithm solving the noise–rejection problem. The efficacy of this approach was investigated also in
real–time conditions and comparisons with a different fault diagnosis highlighted the key features of the proposed
methodology. In this way, by considering wind turbine standard installations, with typical costs and production rates,
the fault diagnosis scheme presented here could be able to reduce the lost production factor with at least 10%, and
to decrease the cost of energy by 2%, due to the decrease of unexpected and unplanned the maintenance operations,
representing the most expensive costs for wind turbines.
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[21] R. Babuška, Fuzzy Modelling and Identification Toolbox, Control Engineering Laboratory, Faculty of Information Technology and Systems,
Delft University of Technology, Delft, The Netherlands, version 3.1 Edition, (Available at http://lcewww.et.tudelft.nl/ b̃abuska) (2000).

[22] S. Simani, C. Fantuzzi, S. Beghelli, Diagnosis techniques for sensor faults of industrial processes, IEEE Transactions on Control Systems
Technology 8 (5) (2000) 848–855.

[23] S. Simani, Fault Diagnosis of a Simulated Industrial Gas Turbine via Identification Approach, International Journal of Adaptive Control and
Signal Processing 21 (4) (2007) 326–353, copyright 2006 John Wiley & Sons, Ltd. ISSN: 0890–6327. DOI: 10.1002/acs.924.

[24] R. J. Patton, F. J. Uppal, S. Simani, B. Polle, Reliable fault diagnosis scheme for a spacecraft attitude control system, Journal of Risk and
Reliability 222 (2) (2008) 139–152, 6th IFAC SAFEPROCESS Special Issue. Publisher: Professional Engineering Publishing. Proceedings
of the Institution of Mechanical Engineers, Part O. ISSN: 1748-006X (Print) 1748-0078 (Online). DOI: 10.1243/1748006XJRR98.

[25] R. J. Patton, F. J. Uppal, S. Simani, B. Polle, Robust FDI applied to thuster faults of a satellite system, Control Engineering Practice 18 (9)
(2010) 1093–1109, ACA’07 – 17th IFAC Symposium on Automatic Control in Aerospace Special Issue. Publisher: Elsevier Science. ISSN:
0967–0661. DOI: 10.1016/j.conengprac.2009.04.011.

13


