We study the equation of state of strongly interacting matter at large densities and vanishing temperature. The hadronic matter equation of state is computed in a relativistic mean-field model and the quark matter equation of state is computed using a NJL-type model which takes into account the possibility of formation of the gapless color flavor locked phase. We focus in particular on the possible phase transition from hadronic matter to quark matter using both Maxwell and Gibbs constructions. We finally discuss the relevance of the equation of state in the context of compact stars and we propose some astrophysical signatures of the presence of quark matter in compact stars.
Equation of state of strongly interacting matter in compact stars
PAGLIARA, Giuseppe
2006
Abstract
We study the equation of state of strongly interacting matter at large densities and vanishing temperature. The hadronic matter equation of state is computed in a relativistic mean-field model and the quark matter equation of state is computed using a NJL-type model which takes into account the possibility of formation of the gapless color flavor locked phase. We focus in particular on the possible phase transition from hadronic matter to quark matter using both Maxwell and Gibbs constructions. We finally discuss the relevance of the equation of state in the context of compact stars and we propose some astrophysical signatures of the presence of quark matter in compact stars.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.