When dealing with microwave electron device modeling, robust device characterization typically involves measurement systems which enable the device to be characterized under actual operations, that means under high-frequency nonlinear regime. Nevertheless, high-frequency large-signal measurement systems are very expensive, have limited frequency, and, moreover, when the identification of a nonlinear model is the measurement purpose, reactive parasitic elements tend to hide the most important nonlinearity source: the “intrinsic drain current source”. In order to overcome these problems, an alternative nonlinear measurement setup based on large-signal sinusoidal excitation at low-frequency (e.g., a few megahertz) is here proposed to characterize the intrinsic electron device behavior. Different experimental examples, carried out on both field-effect and bipolar transistors, are here provided in order to clearly demonstrate the capabilities of the proposed electron-device characterization technique.

A dual-source nonlinear measurement system oriented to the empirical characterization of low-frequency dispersion in microwave electron devices

RAFFO, Antonio;VADALA', Valeria;VANNINI, Giorgio;
2011

Abstract

When dealing with microwave electron device modeling, robust device characterization typically involves measurement systems which enable the device to be characterized under actual operations, that means under high-frequency nonlinear regime. Nevertheless, high-frequency large-signal measurement systems are very expensive, have limited frequency, and, moreover, when the identification of a nonlinear model is the measurement purpose, reactive parasitic elements tend to hide the most important nonlinearity source: the “intrinsic drain current source”. In order to overcome these problems, an alternative nonlinear measurement setup based on large-signal sinusoidal excitation at low-frequency (e.g., a few megahertz) is here proposed to characterize the intrinsic electron device behavior. Different experimental examples, carried out on both field-effect and bipolar transistors, are here provided in order to clearly demonstrate the capabilities of the proposed electron-device characterization technique.
2011
Raffo, Antonio; Vadala', Valeria; P. A., Traverso; A., Santarelli; Vannini, Giorgio; F., Filicori
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/1409186
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
social impact