Adducts based on a bisphosphonate drug (sodium risedronate) and titanium dioxide (TiO2) particles have been developed and characterized in order to improve the bioavailability of orally administrated bisphosphonates. Nanocrystalline and colloidal TiO2, both characterized by powder X-ray diffraction, were used to obtain the adducts 1 and 2, respectively. Adducts 1 and 2 appeared constituted by nanoparticles of about 50 and 90 nm grouped in clusters of about 0.2 and 2.5 m, respectively. Higher amounts of drugs were adsorbed on adduct 2 (7.2 ± 0.3%) with respect to adduct 1 (4.0 ± 0.3%). In vitro studies demonstrate that the adducts were able to release the drug in the pH range 6-9, whereas they remained essentially stable in the pH range 0-5. In vivo studies indicate that after oral administration to male Wistar rats, the microparticles of adduct 2 were able to prolong the presence of risedronate in the bloodstream during an eight hours period, resulting in a relative bioavailability almost doubled with respect to the free drug. This behaviour allows envisioning an improvement of the risedronate therapeutic effects and/or a reduction of its frequency of administration with consequent reduction of gastrooesophageal injuries typically induced by oral administration of bisphosphonates.
Particulate adducts based on sodium risedronate and titanium dioxide for the bioavailability enhancement of oral administered bisphosphonates
DISSETTE, Valeria;BIGNOZZI, Carlo Alberto;DALPIAZ, Alessandro;FERRARO, Luca Nicola;BEGGIATO, Sarah;PASTI, Luisa
2010
Abstract
Adducts based on a bisphosphonate drug (sodium risedronate) and titanium dioxide (TiO2) particles have been developed and characterized in order to improve the bioavailability of orally administrated bisphosphonates. Nanocrystalline and colloidal TiO2, both characterized by powder X-ray diffraction, were used to obtain the adducts 1 and 2, respectively. Adducts 1 and 2 appeared constituted by nanoparticles of about 50 and 90 nm grouped in clusters of about 0.2 and 2.5 m, respectively. Higher amounts of drugs were adsorbed on adduct 2 (7.2 ± 0.3%) with respect to adduct 1 (4.0 ± 0.3%). In vitro studies demonstrate that the adducts were able to release the drug in the pH range 6-9, whereas they remained essentially stable in the pH range 0-5. In vivo studies indicate that after oral administration to male Wistar rats, the microparticles of adduct 2 were able to prolong the presence of risedronate in the bloodstream during an eight hours period, resulting in a relative bioavailability almost doubled with respect to the free drug. This behaviour allows envisioning an improvement of the risedronate therapeutic effects and/or a reduction of its frequency of administration with consequent reduction of gastrooesophageal injuries typically induced by oral administration of bisphosphonates.I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.