Starting from the equation of motion of the quantum operator of a real scalar field φ in de Sitter space-time, a simple differential equation is derived which describes the evolution of quantum fluctuations 〈φ2〉 of this field. Full de Sitter invariance is assumed and no ad hoc infrared cutoff is introduced. This equation is solved explicitly and in massive case our result agrees with the standard one. In massless case the large time behavior of our solution differs by sign from the expression found in earlier papers. A possible cause of discrepancy may be a spontaneous breaking of de Sitter invariance.

Scalar field instability in de Sitter space-time

DOLGOV, Alexander;PELLICCIA, Diego Nicola
2006

Abstract

Starting from the equation of motion of the quantum operator of a real scalar field φ in de Sitter space-time, a simple differential equation is derived which describes the evolution of quantum fluctuations 〈φ2〉 of this field. Full de Sitter invariance is assumed and no ad hoc infrared cutoff is introduced. This equation is solved explicitly and in massive case our result agrees with the standard one. In massless case the large time behavior of our solution differs by sign from the expression found in earlier papers. A possible cause of discrepancy may be a spontaneous breaking of de Sitter invariance.
2006
Dolgov, Alexander; Pelliccia, Diego Nicola
File in questo prodotto:
File Dimensione Formato  
1-s2.0-S0550321305010278-main.pdf

solo gestori archivio

Descrizione: versione editoriale
Tipologia: Full text (versione editoriale)
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 134.77 kB
Formato Adobe PDF
134.77 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
0502197.pdf

accesso aperto

Descrizione: versione preprint
Tipologia: Pre-print
Licenza: PUBBLICO - Pubblico con Copyright
Dimensione 209.38 kB
Formato Adobe PDF
209.38 kB Adobe PDF Visualizza/Apri

I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/523251
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 39
  • ???jsp.display-item.citation.isi??? 38
social impact