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Abstract

Starting from the equation of motion of the quantum operator of a real scalar field ϕ in de Sitter

space-time, a simple differential equation is derived which describes the evolution of quantum

fluctuations 〈ϕ2〉 of this field. Full de Sitter invariance is assumed and no ad hoc infrared cutoff

is introduced. This equation is solved explicitly and in massive case our result agrees with the

standard one. In massless case the large time behavior of our solution differs by sign from the

expression found in earlier papers. A possible cause of discrepancy may be a spontaneous breaking

of de Sitter invariance.
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I. INTRODUCTION

Since de Sitter found his exact solution to Einstein’s equations in 1917, this model of

space-time has been intensively studied because of its maximal symmetry. Moreover, ac-

cording to inflationary scenarios the universe was in (quasi) de Sitter state at some part of

its history. Most probably inflation was induced by a scalar field (inflaton) and this fact

amplifies the interest to the study of scalar fields in de Sitter space. Recent observations of

Supernovae of type Ia [1], implying that present universe is in an accelerated stage, refreshed

the interest to de Sitter space. A small observed value of vacuum (or dark) energy may be

possibly explained by adjustment mechanism realized by a scalar field (for a recent review

see ref. [2]), or by quantum instability of de Sitter space [3].

On the other hand, considerable progress in quantum field theory in curved space-time

has been achieved in the well suited arena of de Sitter space-time, where calculations can be

carried out explicitly with different techniques [4]. In particular, scalar fields were studied

in detail because of their simple properties.

Massless minimally coupled scalar field has the same description of physical modes as

gravitons in transverse-traceless gauge. This relation allows to model infrared problems of

quantum gravity [5], which may generate space-time instability [6], in terms of scalar fields.

Appearance of instability means that de Sitter invariance may be spontaneously broken, and

thus the true vacuum is not invariant under the full symmetry group [7]; this in turn may

lead to the adoption of vacua which are invariant only under a subgroup of the de Sitter

group [8].

In this work we calculate vacuum expectation value of the operator of scalar field squared,

〈ϕ2〉, in de Sitter background, both in massive and massless case. Though this quantity has

been calculated in several papers there is still some confusion about its infrared properties.

Instead of relying on rather ad hoc infrared cut-off we have derived an equation governing

evolution of 〈ϕ2〉 which is solely based on de Sitter invariance. We have found the standard

expression for the massive case, while for massless field our result for large time differs by

sign from the previously published ones.
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This paper is organized as follows. In section II de Sitter geometry is reviewed. In section

III field quantization in this space-time is discussed. In section IV a scalar field ϕ coupled

to gravitation is considered. In section V an equation describing the quantum average of ϕ2

is derived and its solutions are found both for massive and massless cases with an emphasis

on the minimally coupled field. The conclusion is presented in section VI.

Below the following notations are used. An overdot means derivative with respect to

time, the index ”0” means time component of tensor or vector, a letter from the middle of

the Latin alphabet, such as i, j, k, . . . , means spatial components of tensor or vector. The

system of units is c = h̄ = k = 1 and m2

P l/8π = 1.

II. DE SITTER SPACE-TIME

The equations of gravitational field (the Einstein’s equations) with non-zero cosmological

constant Λ, given the gravitational action functional Sg = −
∫

d4x
√−g(R+2Λ)/2, have the

form:

Rab −
1

2
Rgab − Λ gab = Tab, (1)

where R is the scalar curvature, g is the determinant of metric gab and Tab is the energy-

momentum tensor of matter fields.

A very simple but non-trivial case is represented by space-times with a constant curvature,

locally characterized by the condition Rabcd = R(gac gbd − gad gbc)/12, which is equivalent to

having a zero Weyl tensor Cabcd, indicating that the space-time is conformally flat.

These space-times can be viewed as empty spaces with Λ = −R/4 or as filled with a

perfect fluid with the equation of state ̺ = − p. The space with zero curvature R = 0

is Minkowski space-time: it is flat four-dimensional hyperplane. The space with negative

constant curvature is de Sitter space-time, whose topology is R1×S3, while the one with R >

0 is anti-de Sitter space-time. The former can be viewed as a four-dimensional hyperboloid

embedded in five-dimensional Riemannian space: in cartesian five-dimensional coordinates

xa, with the metric ηab = diag(+1,−1,−1,−1,−1), its points must satisfy the relation:

x2

0
− x2

1
− x2

2
− x2

3
− x2

4
= −H−2. (2)
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Different coordinate systems may be used to describe de Sitter space-time, this freedom

corresponds to different choices of Cauchy hyper-surfaces of constant time.

In flat coordinates the metric can be written in the Friedmann–Robertson–Walker form:

ds2 = dt2 − a2(t) dr2, with a(t) = exp(Ht), H =
√

Λ/3. (3)

The isometry group of de Sitter space-time is SO(4, 1), that is the Lorentz group in a

five-dimensional universe with four spatial dimensions.

Actually SO(4, 1) is only one of the four disconnected parts of the full symmetry group

O(4, 1) [7], the other parts are obtained reflecting time, space, and both of them. The

antipodal transformation which is an element of the second part sends a point x to its

antipodal point x, lying in the opposite side of the whole de Sitter space-time (for a discussion

of antipodal points, topology and symmetry see [9, 10]). If Xa(x) is a five-vector locating x

in the metric ηab, then x is located by −Xa(x).

Matter fields in general relativity are analyzed under some energy conditions, among

which we mention the assumed weak energy condition, stating that at each space-time point

x there must be TabW
aW b ≥ 0 for any time-like vector W ∈ Tx and by continuity for any

null vector W ∈ Tx too (Tx being the space of tangent vectors at x) [11].

In de Sitter space-time the Ricci tensor and the scalar curvature have a very simple form:

Rab = −3H2 gab, R = −12H2. (4)

From the Einstein equations follows the conservation law for the energy-momentum tensor

that can be written, in the chosen metric, as:

∇a T
a
0

= ˙̺ + 3H(̺+ p) = 0. (5)

Thus in the exact de Sitter state, implying ̺+ p = 0, energy density ̺ must be constant.

III. QUANTUM FIELD THEORY IN DE SITTER SPACE.

The choice among different possible quantization procedures must both take into account

their consequences for symmetry breaking, anomalies and zero point energy, and the repre-
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sentations of the symmetry group in question. Scalar representations of de Sitter group can

be divided into the principal series (m2 ≥ 4H2), the complementary series (0 < m2 < 4H2),

and the discrete series (m2 = 0 is the only interesting case) [12].

For massive scalar fields, corresponding to the first two cases, several different procedures

are known which lead to a well defined Fock space. Massless case is more cumbersome,

because, as it has been shown by several authors [7], there is no Fock space corresponding to

a de Sitter invariant vacuum. This consideration leads to the Gupta–Bleuler quantization

(naturally extensible to the massive case) in order to avoid such problem and keep intact

the full de Sitter invariance [13].

A rigorous covariant quantization is achieved in the global approach to quantum field

theory [14], where the starting point is the local symmetry and de Sitter group is considered

as a charge group generated by the Killing vector fields, arising in the treatment of the

gravitational field as an external field in the frameworks of the background field method.

An axiomatic approach, generalizing to curved space the axiomatic methods of

Minkowskian quantum field theory [15], impose some basic requirements on the two-point

functions which are necessary to obtain a well defined quantum theory [16]. Reasonable

general principles seem to be covariance, locality, and positive definiteness of the two-point

functions, as hold in Minkowskian case. The spectral condition, instead, cannot be literally

translated [17], and one must adopt a weaker one, based on the property that the two-point

function has to be a boundary value of an analytic function with the correct iǫ prescription.

The latter is also a generalization of the Hadamard condition [18]. Being formulated only

for free field theory, this condition may be considered as a consequence of the Einstein’s

equivalence principle. It assures that Green functions have the same singularities as in flat

space.

Causal problems arise from antipodal points, where Green functions are also singular,

although singularities occurring at those points are unobservable, since such points are

always separated by a horizon [19]. Instead of implying global condition on the propagators,

one can avoid this problem in the flat coordinate system, where a half of the space, containing

antipodal points, is excluded.
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Below the standard quantization procedure will be assumed, with the usual commutation

relation between the scalar field and its conjugate momentum, which can be recast into

the usual commutation relations among creation and annihilation operators, provided the

Wronskian condition on the mode functions holds [20]. There is a close resemblance to the

flat space-time case, the only difference being in the explicit form of the mode functions.

In de Sitter space the latter are not plane waves, but a linear combination of the Hankel

functions, with two constants coefficients, determined by the Wronskian condition plus the

choice of the vacuum state.

Actually there is a one-parameter family of de Sitter invariant vacua [7], called α-vacua.

The best known and often used one is determined by the Bunch–Davies prescription, leading

to the usual Euclidean vacuum in the limiting case of flat space-time. Since the discrete

PT (parity and time reversal) symmetry is a subgroup of de Sitter group, the condition of

invariance with respect to the total group automatically makes the free vacuum propagator

PT invariant. Supplementing this choice with the above mentioned Hadamard condition

leads to the Euclidean or Bunch–Davies vacuum [7, 20].

It can be shown [21] that among α-vacua in planar coordinates the Euclidean vacuum is

naturally interpreted as the state with no particles on the horizon at t = ∞ [22]. Another

feature of the Euclidean vacuum is that α-vacua in an interacting theory are ill-defined [23],

but can be regarded at least approximately as excited states in the Euclidean vacuum [24].

Renormalization considerations also lead to the conclusion that the Euclidean vacuum is the

only physically acceptable state [25].

One more indication of the physical relevance of the Euclidean vacuum comes from the

study of the behavior of the energy-momentum tensor. It has been proved [26] that the

renormalized value of this tensor for all ultraviolet and infrared physically allowed initial

states asymptotically approaches the one obtained in the Bunch–Davies state. The renor-

malized value has been calculated by the adiabatic regularization. Although this scheme

is not covariant, in the Friedmann–Robertson–Walker space-times it is equivalent to the

covariant point-splitting procedure.

Through back-reaction of the expectation value of the energy-momentum tensor on grav-
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ity its quantum fluctuations could influence the metric. Since for massless free fields Tab

contains only derivatives of the field, it is not sensitive to long-wavelength modes. That

is why in non-interacting theory it does not manifest breaking of the full de Sitter group.

Purely gravitational back-reaction mechanism, instead, could drive changes in the metric,

terminating the de Sitter phase: this might be a viable way to exit inflationary era (see

[27, 28] and references therein).

It was proved [7] that in massless case there is no Fock space for a full de Sitter invariant

propagator, because the calculation in the limit m → 0 are performed through an infrared

cutoff, which excludes zero modes from the integration over the phase space and hence the

set of mode functions is not complete. The nature of those cutoffs is not clear. It may be

understood through reasonable physical arguments, for example from the size of the initial

wedge that inflated [29]. Infrared properties of massless self-interacting scalar field have

been considered in [30].

Particle interpretation requires a Fock space, that is why some authors [8],[31] postulated

less invariant vacua, for example compact O(4) invariant vacua or non-compact E(3) invari-

ant vacua. In the former case the compactness allows to construct new zero modes in order

to have a complete set of mode functions. In the E(3) invariant vacua this is not possible.

For this reason such vacua are considered as idealizations of physical vacua.

Instability of de Sitter space-time in the presence of massless minimally coupled scalar

field forces one to rely on the Allen–Folacci vacuum [31], which is not invariant under the full

symmetry group. This may be seen, as in the massive case, through the energy-momentum

tensor: its renormalized value in the Allen–Folacci vacuum is an attractor solution for any

other vacuum choice in the massless case [26]. In the non-invariant vacua the expectation

value of the energy-momentum tensor becomes different from the one obtained in the Eu-

clidean vacuum. It can also depend on time [8], leading to possible changes in the metric

through the back-reaction mechanism.
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IV. SCALAR FIELD

A scalar field ϕ with mass m and coupling ξ to the curvature scalar, is described by the

action:

S =
1

2

∫

d4x
√
−g
[

∇a ϕ∇a ϕ−m2ϕ2 − ξRϕ2
]

. (6)

which leads to the following equation of motion

∇a ∇a ϕ +m2ϕ+ ξRϕ = 0. (7)

In metric (3) the equation of motion reads:

ϕ̈−
(

△/a2
)

ϕ+ 3Hϕ̇+m2ϕ+ ξRϕ = 0, (8)

where △ means the tridimensional Laplacian operator in flat space.

The energy-momentum tensor of the scalar field ϕ is defined as

T ab ≡ −2√−g
δS

δgab

. (9)

Remembering that gab g
bc = δ c

a and the matrix property tr ln gab = ln det gab and taking

the infinitesimal variation of the former one can obtain the following useful identities:

δ
√−g
δ gab

=
1

2

√
−g gab,

δ gcd

δ gab

= −gac gbd, gcd δ Rcd

δ gab

= ∇a∇b − gab ∇e ∇e.

At this point the expression for the operator of the energy-momentum tensor can be

easily derived:

T ab = − 1

2
gab
(

∇c ϕ∇c ϕ−m2ϕ2
)

+ ∇a ϕ∇b ϕ− ξ

(

Rab − 1

2
gabR

)

ϕ2

− ξ
(

∇a ∇b − gab ∇c ∇c
)

ϕ2. (10)

As expected this tensor is covariantly conserved:

∇aT
a
b = 0. (11)

Let us note that the conservation is realized only on solutions of the equation of motion (7).
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It’s straightforward to write the operator expression for the trace of Tab:

T a
a = −∇a ϕ∇a ϕ+ 2m2 ϕ2 + ξ Rϕ2 + 3 ξ gab ∇a ∇b ϕ

2. (12)

In the special case of a massless conformally coupled scalar field (m = 0, ξ = 1/6) this

expression vanishes on solutions of the equation of motion (7). However, since the product

of two operators in coinciding space-time points is ill-defined a regularization prescription

is necessary. The latter may break the classical identities and lead to well known quantum

anomalies. In particular, the vacuum expectation value of the trace of Tab possesses such an

anomaly called the trace anomaly or conformal anomaly. Independently on renormalization

technique the resulting expression for the anomaly in four dimensions is [14, 20]:

〈T a
a〉ren = − 1

2880 π2

(

RabcdR
abcd − Rab R

ab − 2R
)

. (13)

In de Sitter space it becomes:

〈T a
a〉ren =

H4

240π2
. (14)

The complete expression for the regularized vacuum expectation value of Tab in de Sitter

space for arbitrary m and ξ was calculated in ref. [32, 33] and reads:

〈Tab〉ren =
gab

64π2

{

m2

[

m2 −
(

ξ − 1

6

)

R

] [

ψ

(

3

2
+ ν

)

+ ψ

(

3

2
− ν

)

− ln

(

12m2

|R|

)]

−1

2

(

ξ − 1

6

)2

R2 +
R2

2160
−m2

(

ξ − 1

6

)

R− m2R

18

}

, (15)

where ψ is the logarithmic derivative of the Gamma-function and

ν2 =
9

4
+ 12

(

m2

R
− ξ

)

. (16)

The result (15) is obtained with a covariant regularization procedure which respects

conservation condition (11) and de Sitter symmetry according to which Tab ∼ gab.

In the conformal case, m = 0 and ξ = 1/6, the trace of (15) coincides, as expected, with

(14). In the limit of m→ 0 and minimal coupling to gravity, ξ = 0, the energy-momentum

tensor becomes:

Tab =
gabH

4

π2

(

3

32
+

1

960
− 1

32

)

. (17)
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The first term in the brackets comes from m2Rψ(3/2 − ν)/6 in eq. (15), simply using the

definition ψ(z) = d(ln Γ(z))/dz and the identity Γ(z+1) = zΓ(z) in the limit z → 0. It is the

standard non-anomalous term in the energy density at m = 0. The other two terms come

from anomalous contributions: the first of them is purely anomalous one which survives

in conformal limit, while the second disappears only for ξ = 1/6 and is non-vanishing for

m = 0 and ξ = 0.

V. CALCULATION OF QUANTUM AVERAGE OF ϕ2 IN DE SITTER SPACE.

The quantity 〈ϕ2〉, that is the quantum average value of the product of the scalar field

operators ϕ̂ in coincident space-time points, plays a primary role in quantum field theory.

There are different methods to obtain its expression, which is divergent without an appro-

priate renormalization of the field operator ϕ̂.

Such methods [34] comprise the use of zeta function techniques, point-splitting regu-

larization, dimensional regularization, etc. giving rise in general to different renormalized

value of 〈ϕ2〉. The usual expansion of the field operator ϕ̂ through its mode functions, that

is through the Hankel functions in de Sitter space, allows to find an expression for 〈ϕ2〉
in terms of Digamma and Hypergeometric functions, which gives the result [35] (originally

obtained with point-splitting regularization):

〈ϕ2〉 =
1

16π2

{

m2 ln

(

µ2

12m2

)

+

[

m2 −
(

ξ − 1

6

)

R

] [

ln

(

−R

µ2

)

+ ψ

(

3

2
+ ν

)

+ ψ

(

3

2
− ν

)]}

.

(18)

The renormalization mass µ is to be chosen in such a way that 〈ϕ2〉 vanishes in flat space

limit i.e. when R → 0. In massive case it can be achieved with µ2 = 12m2. Indeed, when

m/H is large then ν ≈ im/H and

ψ(3/2 + ν) + ψ(3/2 − ν) ≈ 2 ln(m/H). (19)

This term cancels down with ln(−R/µ2) if µ2 = 12m2. In massless case and vanishing R

〈ϕ2〉 → 0 for arbitrary value of µ2 and almost any ξ. However, for ξ = 0 the limit m→ 0 is
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singular and

〈ϕ2〉 → 3H4

8π2m2
. (20)

In this case the transition to H = 0 is non-trivial, if first m→ 0.

In this work we will develop a different approach to calculation of the quantum average

value of ϕ2 in de Sitter space. We will derive an ordinary differential equation governing the

evolution of f(t) ≡ 〈ϕ2〉. To this end we will use the equation of motion for the quantum

operator ϕ̂ (8) and the commutation of the quantum averaging and differentiation. This

approach is similar to that indicated in ref. [36]. The scalar field ϕ̂ is an operator-valued

distribution, and the rule for derivatives of distributions allows to use the standard rule for

derivatives of the product of functions; in our case it is ϕ̂·ϕ̂. In this way we obtain:

gab ∇a ∇b f = gab ∇a〈2ϕ∇b ϕ〉 = 〈2 gab ∇a ϕ∇b ϕ+ 2ϕ gab ∇a ∇b ϕ〉. (21)

This identity permits to write the following equation for f :

(∇a ∇a +m2 + ξ R)f = 2 〈∇a ϕ∇a ϕ〉 −m2f − ξ R f. (22)

To make this equation meaningful we need to calculate the first term in the r.h.s. of (22) in

terms of known quantities. Expressing it through the trace of the energy-momentum tensor

(12), and assuming unbroken de Sitter invariance, one can get a solvable closed equation for

f . After straightforward algebra one obtains:

(1 − 6 ξ)∇a ∇a f − 2m2f = −2〈T a
a〉 = −8 〈̺〉, (23)

where 〈̺〉 is the vacuum energy density of quantum fluctuations of ϕ. If de Sitter invariance

is unbroken then 〈̺〉 = 〈T a
a〉ren/4 and the trace can be trivially calculated from eq. (15) for

arbitrary values of m and ξ.

In homogeneous background f should depend only on time and the equation can be

rewritten as:

(1 − 6ξ)
(

f̈ + 3H ḟ
)

− 2m2f = −8 〈̺〉. (24)
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Because of de Sitter invariance 〈̺〉 = constant, and this equation can be solved explicitly.

In the case of minimal coupling to gravity, i.e. ξ = 0, the solution is:

f = C1 exp

[(

−3

2
H −

√

9

4
H2 + 2m2

)

t

]

+ C2 exp

[(

−3

2
H +

√

9

4
H2 + 2m2

)

t

]

+
4〈̺〉
m2

,

(25)

where C1 and C2 are some numerical constants. Surprisingly the solution is time dependent

if any of C1,2 is non-zero, moreover it contains an exponentially rising term, proportional

to C2. The solution is constant, f = 4〈ρ〉/m2, independently of initial conditions only for

conformal coupling, ξ = 1/6. It is unclear if time dependence or, at least, exponential rise

can be killed by an appropriate choice of physically justified initial conditions. The limit of

zero mass indicates the opposite, that C2 should be non-zero (see the end of this Section).

Possibly fast (exponential) evolution of 〈ϕ2〉 can be helpful for solution of the well known

problem of vacuum energy.

In the case 9H2/4 ≫ 2m2 and t < 3H/2m2 the solution is

f = C1 exp (−3H t) + C2

(

1 +
2m2

3H
t

)

+
4〈̺〉
m2

. (26)

If C1 and C2 are not singular at m = 0, the dominant term for m→ 0 is

〈ϕ2〉 =
4〈̺〉
m2

. (27)

It is formally the same as that found for ξ = 1/6 above but one should keep in mind that

〈ρ〉 depends both on m and ξ. Expression (27) would agree with the previously established

one [35, 37] if we substitute for the energy density of quantum fluctuations of ϕ the small-

mass limit of the result [32, 33]: 〈̺〉 = 3H4/(32π2), i.e. only the first term in eq. (17),

while the anomalous contributions are disregarded. An account of the anomaly changes the

numerical coefficient and 〈ϕ2〉 = 3H4/8π2m2 turns into 〈ϕ2〉 = 61H4/240π2m2.

However, it may be not as simple as that because, taken as it is, eq. (24) is not consistent

in conformal limit, m = 0, ξ = 1/6. Indeed, in this limit the l.h.s. of this equation vanishes,

while the r.h.s. is non-zero due to trace anomaly. A possible way out is a singularity in 〈ϕ2〉
at m = 0 or ξ = 1/6, as indicated by eqs. (25),(27) according to which 〈ϕ2〉 ∼ 〈̺〉/m2.
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One can also solve eq. (23) directly for m = 0 (and ξ = 0):

f = C1 + C2 e
−3H t − 8

3

〈̺〉
H

t, (28)

which gives the late time behavior

f ≈ −8

3

〈̺〉
H

t. (29)

This solution almost coincides with the earlier found one [35, 37] - the absolute value is the

same if anomaly is not included but, surprisingly, the sign is opposite. The same solution

(28) can be obtained from expression (26) in the limit of zero mass under condition that the

solution is not singular at m = 0. To realize that the coefficient C2 should be non-vanishing

and singular in m: C2 = C20 − 4〈̺〉/m2, where C20 is a non-singular constant at m = 0.

With m tending to zero the last term cancels out the singular in m part in eq. (26) and the

remaining one coincides with (29).

We see that for small mass and large time the average value of ϕ2 becomes negative.

It looks strange because ϕ2 is a positive definite operator. Still it may be true because

the vacuum expectation value of this operator needs to be renormalized and after (infinite)

renormalization can become negative.

VI. CONCLUSION

The case of spontaneous symmetry breaking in de Sitter space-time is similar to that

of two-dimensional flat space-time with a broken Lorentz invariance [38]. Although it has

been proposed in ref. [39], on the basis of functional methods, that in de Sitter space-time

symmetries are always dynamically restored, this is probably not the case.

The occurrence of this phenomenon may be connected with the choice of the vacuum state

[40] and related to this choice character of the infrared behavior in the massless limit. It also

relies on the assumptions imposed on admissible physical states and theoretical ambiguities

in quantum field theory in curved space. The properties of the admitted states, as e.g.

behavior at large distances, zero modes, or possible interactions, determine the character of

infrared divergences or directly the symmetry breaking [41]. In any case infrared divergences
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could quite naturally lead to an instability. Possible manifestation of this phenomenon may

be realized by quantum gravity effects in de Sitter space. They may lead to quantum

instability of this state [42, 43]. In other words, due to quantum effects de Sitter solution

could tend to some other solutions of the Einstein equations loosing de Sitter symmetry [44].

In this paper we have derived and solved a differential equation which describes the

behavior of the vacuum expectation value of the quantum operator product ϕ2 in de Sitter

space. We have found that generally the solution is time dependent, though for non-zero

mass a very special constant solution exits. However this solution cannot be continuously

transformed to massless limit.

Our result is not based on any ad hoc infrared cutoff and it agrees with the standard

one in the case of small but non-vanishing mass. This agreement is an indication for the

validity of our approach. In the massless case, however, we obtain a surprising difference -

the magnitude of 〈ϕ2〉 is the same as found in the earlier papers but the sign is opposite.

The large time behavior of this solution does not depend upon initial conditions.

We would like to stress that the result is obtained under assumption of de Sitter symmetry

for quantum expectation values, which demands ̺ = constant and 〈̺〉 + 〈p〉 = 0. The

numerical coefficient in eq. (29) is determined by the expression [32, 33] for 〈̺〉. Possibly

time dependence of quantum fluctuations of scalar field is an indication of spontaneous

symmetry breaking.

The minus sign in the massless case with respect to other calculations could be a signal of

a quantum infrared anomaly in de Sitter space. On the other hand, this discrepancy could

emerge as an indication of some problem in the limiting procedure to get zero mass from

the massive case. This situation has a close resemblance to the appearance of the conformal

anomaly in the massless limit of the renormalized value of the trace of the energy-momentum

tensor (12). After the preparation of this work we became aware of a recent paper about

gravitons in de Sitter space [45], where the renormalized value of the energy-momentum

tensor has the sign opposite to that in the literature.

Further investigations may clarify the situation, in particular a step by step comparison

with results which can be obtained in the Euclidean sector which, although not shown

14



here, would present the same anomalous behavior in the massless case. An investigation of

Euclidean case may be helpful in understanding where a possible breakdown of the standard

behavior can occur.
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[13] S. De Biévre and J. Renaud, Massless Gupta–Bleuler vacuum in (1+1)-dimensional de Sitter

space-time, Phys.Rev. D57 (1998) 6230-6241;

J.P. Gazeau, J. Renaud and M.V. Takook, Gupta–Bleuler quantization for minimally coupled

scalar fields in de Sitter space, Class.Quant.Grav. 17 (2000) 1415-1434, gr-qc/9904023.

[14] B.S. DeWitt, The Global Approach to Quantum Field Theory (Oxford University Press, Ox-

ford, 2003).

[15] R.F. Streater and A.S. Wightman, PCT, spin and statistics, and all that (Benjamin Cum-

16

http://arxiv.org/hep-th/0308022
http://arxiv.org/hep-th/0311055
http://arxiv.org/hep-th/0108119
http://arxiv.org/gr-qc/9904023


mings, New York, 1964).

[16] J. Bros and U. Moschella, Two-point Functions and Quantum Fields in de Sitter Universe,

Rev.Math.Phys. 8 (1996) 327-392, gr-qc/9511019.

[17] J. Bros, H. Epstein and U. Moschella, The asymptotic symmetry of de Sitter spacetime,

Phys.Rev. D65 (2002) 084012, hep-th/0107091.

[18] See M.R. Brown and A.C. Ottewill, Photon propagators and the definition and approximation

of renormalized stress tensors in curved space-time, Phys.Rev. D34 (1986) 1776-1786;

D. Bernard and A. Folacci, Hadamard function, stress tensor, and de Sitter space, Phys.Rev.

D34 (1986) 2286-2291;

B.S. Kay and R.M. Wald, Theorems on the uniqueness and thermal properties of stationary,

nonsingular, quasifree states on spacetimes with a bifurcate Killing horizon, Phys.Rep. 207

(1991) 49;

W. Junker, Adiabatic Vacua and Hadamard States for Scalar Quantum Fields on Curved

Spacetime, hep-th/9507097, and references therein.

[19] See e.g. R. Bousso, A. Maloney and A. Strominger, Conformal vacua and entropy in de Sitter

space, Phys.Rev. D65 (2002) 104039, hep-th/0112218.

[20] N.D. Birrell and P.C.W. Davies, Quantum fields in curved space (Cambridge University Press,

Cambridge, 1982);

S.A. Fulling, Aspects of Quantum Field Theory in Curved Space-Time, (Cambridge University

Press, Cambridge, 1989).

[21] For a detailed discussion about properties of α-vacua and their relation with inflation

see e.g. U.H. Danielsson, On the consistency of de Sitter vacua, JHEP 0212 (2002) 025,

hep-th/0210058;

K. Goldstein and D.A. Lowe, A note on α-vacua and interacting field theory in de Sitter space,

Nucl.Phys. B669 (2003) 325-340, hep-th/0302050;

J. de Boer, V. Jejjala and D. Minic, Alpha-states in de Sitter space, hep-th/0406217.

[22] M. Spradlin and A. Volovich, Vacuum States and the S-Matrix in dS/CFT, Phys.Rev. D65

(2002) 104037, hep-th/0112223.

17

http://arxiv.org/gr-qc/9511019
http://arxiv.org/hep-th/0107091
http://arxiv.org/hep-th/9507097
http://arxiv.org/hep-th/0112218
http://arxiv.org/hep-th/0210058
http://arxiv.org/hep-th/0302050
http://arxiv.org/hep-th/0406217
http://arxiv.org/hep-th/0112223


[23] M.B. Einhorn and F. Larsen, Interacting Quantum Field Theory in de Sitter Vacua, Phys.Rev.

D67 (2003) 024001, hep-th/0209159.

[24] M.B. Einhorn and F. Larsen, Squeezed States in the de Sitter Vacuum, Phys.Rev. D68 (2003)

064002, hep-th/0305056.

[25] T. Banks and L. Mannelli, De Sitter vacua, renormalization and locality, Phys.Rev. D67

(2003) 065009, hep-th/0209113;

H. Collins, R. Holman and M.R. Martin, The fate of the α-vacuum, Phys.Rev. D68 (2003)

124012, hep-th/0306028.

[26] P.R. Anderson et al. Attractor states and infrared scaling in de Sitter space, Phys.Rev. D62

(2000) 124019, gr-qc/0005102.

[27] N.C. Tsamis and R.P. Woodward, The Quantum Gravitational Back-Reaction on Inflation,

Annals Phys. 253 (1997) 1-54, hep-ph/9602316.

[28] R.H. Brandenberger and C.S. Lam, Back-Reaction of Cosmological Perturbations in the Infi-

nite Wavelength Approximation, hep-th/0407048.

[29] See e.g. A.D. Linde, Particle Physics and Inflationary Cosmology (Harwood Academic Pub-

lishers, Chur, 1990).

[30] V.K.Onemli and R.P.Woodard, Super-Acceleration from Massless, Minimally Coupled φ4,

Class.Quant.Grav. 19 (2002) 4607, gr-qc/0204065;

V.K.Onemli and R.P.Woodard, Quantum effects can render w < −1 on cosmological scales,

Phys.Rev. D70 (2004) 107301, gr-qc/0406098;

T.Brunier, V.K.Onemli and R.P.Woodard, Two Loop Scalar Self-Mass during Inflation,

Class.Quant.Grav. 22 (2005) 59-84, gr-qc/0408080.

[31] B. Allen and A. Folacci, Massless minimally coupled scalar field in de Sitter space, Phys.Rev.

D35 (1987) 3771-3778.

[32] J.S.Dowker and R.Critchley, Effective Lagrangian and energy-momentum tensor in de Sitter

space, Phys.Rev. D13 (1976) 3224-3232.

[33] T.S. Bunch and P.C.W. Davies, Quantum field theory in de Sitter space: renormalization by

point-splitting, Proc.R.Soc.Lond. A360 (1978) 117-134.

18

http://arxiv.org/hep-th/0209159
http://arxiv.org/hep-th/0305056
http://arxiv.org/hep-th/0209113
http://arxiv.org/hep-th/0306028
http://arxiv.org/gr-qc/0005102
http://arxiv.org/hep-ph/9602316
http://arxiv.org/hep-th/0407048
http://arxiv.org/gr-qc/0204065
http://arxiv.org/gr-qc/0406098
http://arxiv.org/gr-qc/0408080


[34] For comparison among different covariant renormalization schemes see e.g. R.D. Ball, Chiral

gauge theory, Phys.Rep. 182 (1989) 1-186;

V. Moretti, Local ζ-function techniques vs point-splitting procedure: a few rigorous results,

Commun.Math.Phys. 201 (1999) 327-363, gr-qc/9805091.

[35] A. Vilenkin and L.H. Ford, Gravitational effects upon cosmological phase transitions,

Phys.Rev. D26 (1982) 1231-1241.

[36] A. Vilenkin, Quantum fluctuations in the new inflationary universe, Nucl.Phys. B226 (1983)

527-546.

[37] A.D. Linde, Scalar field fluctuations in the expanding universe and the new inflationary uni-

verse scenario, Phys.Lett. B116 (1982) 335-339;

A.A. Starobinski, Dynamics of phase transitions in the new inflationary universe scenario and

generation of perturbations, Phys.Lett, B117 (1982) 175-178;

F. Finelli et al., Energy-Momentum Tensor of Field Fluctuations in Massive Chaotic Inflation,

Phys.Rev. D65 (2002) 103521.

[38] L.H. Ford and A. Vilenkin, Global symmetry breaking in two-dimensional flat spacetime and

in de Sitter spacetime, Phys.Rev. D33 (1986) 2833-2839.

[39] B. Ratra, Restoration of spontaneously broken continous symmetries in de Sitter spacetime,

Phys.Rev. D31 (1985) 1931-1955.

[40] D. Polarski, Infrared divergences in de Sitter space, Phys.Rev. D43 (1991) 1892-1895.

[41] I.H. Redmount, Excited-state spectra of de Sitter-space scalar fields, Phys.Rev. D40 (1989)

3343-3356;

L.H. Ford and C. Pathinayake, Bosonic zero-frequency modes and initial conditions, Phys.Rev.

D39 (1989) 3642-3646;

A.D. Dolgov, M.B. Einhorn and V.I. Zakharov, The vacuum of de Sitter space, Acta

Phys.Polon. B26 (1995) 477-489, gr-qc/9405026;

A.D. Dolgov, M.B. Einhorn and V.I. Zakharov, Infrared effects in a de Sitter background,

Phys.Rev. D52 (1995) 717-722, gr-qc/9403056.

[42] R.P. Woodward, De Sitter Breaking in Field Theory, gr-qc/0408002.

19

http://arxiv.org/gr-qc/9805091
http://arxiv.org/gr-qc/9405026
http://arxiv.org/gr-qc/9403056
http://arxiv.org/gr-qc/0408002


[43] For aspects of quantum gravity in de Sitter space see e.g. E. Witten, Quantum Gravity in De

Sitter Space, hep-th/0106109;

D. Klemm and L. Vanzo, Aspects of Quantum Gravity in de Sitter Spaces, hep-th/0407255;

G. Cognola et al., One-loop f(R) gravity in de Sitter universe, JCAP 0502 (2005) 010,

hep-th/0501096.

[44] A. Folacci, Toy model for the zero-mode problem in the conformal sector of de Sitter quantum

gravity, Phys.Rev. D53 (1996) 3108-3117.

[45] F. Finelli, G. Marozzi, G.P. Vacca and G. Venturi, Adiabatic regularization of the graviton

stress-energy tensor in de Sitter space-time, gr-qc/0407101.

20

http://arxiv.org/hep-th/0106109
http://arxiv.org/hep-th/0407255
http://arxiv.org/hep-th/0501096
http://arxiv.org/gr-qc/0407101

	Introduction
	De Sitter space-time
	Quantum field theory in de Sitter space.
	Scalar field
	Calculation of quantum average of 2 in de Sitter space. 
	Conclusion
	Acknowledgments
	References

