The three Na+/Ca2+ exchanger isoforms, NCX1, NCX2, and NCX3, contain a large cytoplasmic loop that is responsible for the regulation of activity. We have used 347 residues of the loop of NCX2 as the bait in a yeast two-hybrid approach to identify proteins that could interact with the exchanger and regulate its activity. Screening of a human brain cDNA library identified the epsilon and zeta isoforms of the 14-3-3 protein family as interacting partners of the exchanger. The interaction was confirmed by immunoprecipitation and in vitro binding experiments. The effect of the interaction on the homeostasis of Ca2+ was investigated by co-expressing NCX2 and 14-3-3epsilon in HeLa cells together with the recombinant Ca2+ probe aequorin; the ability of cells expressing both NCX2 and 14-3-3epsilon to dispose of a Ca2+ transient induced by an InsP3-producing agonist was substantially decreased, indicating a reduction of NCX2 activity. The 14-3-3epsilon protein also inhibited the NCX1 and NCX3 isoforms. In vitro binding experiments revealed that all three NCX isoforms interacted with multiple 14-3-3 isoforms. 14-3-3 was bound by both phosphorylated and nonphosphorylated NCX, but the phosphorylated form had much higher binding affinity.
Inhibitory interaction of the plasma membrane Na+/Ca 2+ exchangers with the 14-3-3 proteins
RIZZUTO, Rosario;
2006
Abstract
The three Na+/Ca2+ exchanger isoforms, NCX1, NCX2, and NCX3, contain a large cytoplasmic loop that is responsible for the regulation of activity. We have used 347 residues of the loop of NCX2 as the bait in a yeast two-hybrid approach to identify proteins that could interact with the exchanger and regulate its activity. Screening of a human brain cDNA library identified the epsilon and zeta isoforms of the 14-3-3 protein family as interacting partners of the exchanger. The interaction was confirmed by immunoprecipitation and in vitro binding experiments. The effect of the interaction on the homeostasis of Ca2+ was investigated by co-expressing NCX2 and 14-3-3epsilon in HeLa cells together with the recombinant Ca2+ probe aequorin; the ability of cells expressing both NCX2 and 14-3-3epsilon to dispose of a Ca2+ transient induced by an InsP3-producing agonist was substantially decreased, indicating a reduction of NCX2 activity. The 14-3-3epsilon protein also inhibited the NCX1 and NCX3 isoforms. In vitro binding experiments revealed that all three NCX isoforms interacted with multiple 14-3-3 isoforms. 14-3-3 was bound by both phosphorylated and nonphosphorylated NCX, but the phosphorylated form had much higher binding affinity.I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.