The efficiency, divergence, and specificity of virtually all intracellular metabolic and signalling pathways largely depend on their compartmentalized organization. A corollary of the requirement of compartmentalization is the dynamic structural partition of the intracellular space by endomembrane systems. A branch of these membranes communicate with the extracellular space through the endo- and exocytotic processes. Others, like the mitochondrial and endoplasmic reticulum networks accomplish a further role, being fundamental for the maintenance of cellular energy balance and for determination of cell fate under stress conditions. Recent structural and functional studies revealed that the interaction of these networks and the connectivity state of mitochondria controls metabolic flow, protein transport, intracellular Ca2+ signalling, and cell death. Moreover, reflecting the fact that the above processes are accomplished in a microdomain between collaborating organelle membranes, the existence of macromolecular complexes at their contact sites have also been revealed. Being not only assistants of nascent protein folding, chaperones are proposed to participate in assembling and maintaining the function of the above complexes. In this chapter we discuss recently found examples of such an assembly of protein interactions driven by chaperone proteins, and their role in regulating physiological and pathological processes.

Chaperones as parts of organelle networks

SZABADKAI, Gyorgy
Primo
;
RIZZUTO, Rosario
Ultimo
2007

Abstract

The efficiency, divergence, and specificity of virtually all intracellular metabolic and signalling pathways largely depend on their compartmentalized organization. A corollary of the requirement of compartmentalization is the dynamic structural partition of the intracellular space by endomembrane systems. A branch of these membranes communicate with the extracellular space through the endo- and exocytotic processes. Others, like the mitochondrial and endoplasmic reticulum networks accomplish a further role, being fundamental for the maintenance of cellular energy balance and for determination of cell fate under stress conditions. Recent structural and functional studies revealed that the interaction of these networks and the connectivity state of mitochondria controls metabolic flow, protein transport, intracellular Ca2+ signalling, and cell death. Moreover, reflecting the fact that the above processes are accomplished in a microdomain between collaborating organelle membranes, the existence of macromolecular complexes at their contact sites have also been revealed. Being not only assistants of nascent protein folding, chaperones are proposed to participate in assembling and maintaining the function of the above complexes. In this chapter we discuss recently found examples of such an assembly of protein interactions driven by chaperone proteins, and their role in regulating physiological and pathological processes.
978-0-387-39974-4
mitochondria, calcium, apoptosis
File in questo prodotto:
File Dimensione Formato  
chaperones-as-parts-of-organelle-networks.pdf

solo gestori archivio

Descrizione: versione editoriale
Tipologia: Full text (versione editoriale)
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 1.07 MB
Formato Adobe PDF
1.07 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/518799
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 21
  • ???jsp.display-item.citation.isi??? 15
social impact