Reactive oxygen species (ROS) are potent inducers of oxidative damage and have been implicated in the regulation of specific cellular functions, including apoptosis. Mitochondrial ROS increase markedly after proapoptotic signals, though the biological significance and the underlying molecular mechanisms remain undetermined. P66Shc is a genetic determinant of life span in mammals, which regulates ROS metabolism and apoptosis. We report here that p66Shc is a redox enzyme that generates mitochondrial ROS (hydrogen peroxide) as signaling molecules for apoptosis. For this function, p66Shc utilizes reducing equivalents of the mitochondrial electron transfer chain through the oxidation of cytochrome c. Redox-defective mutants of p66Shc are unable to induce mitochondrial ROS generation and swelling in vitro or to mediate mitochondrial apoptosis in vivo. These data demonstrate the existence of alternative redox reactions of the mitochondrial electron transfer chain, which evolved to generate proapoptotic ROS in response to specific stress signals.

Electron transfer between cytochrome c and p66(Shc) generates reactive oxygen species that trigger mitochondrial apoptosis

PINTON, Paolo;RIZZUTO, Rosario;
2005

Abstract

Reactive oxygen species (ROS) are potent inducers of oxidative damage and have been implicated in the regulation of specific cellular functions, including apoptosis. Mitochondrial ROS increase markedly after proapoptotic signals, though the biological significance and the underlying molecular mechanisms remain undetermined. P66Shc is a genetic determinant of life span in mammals, which regulates ROS metabolism and apoptosis. We report here that p66Shc is a redox enzyme that generates mitochondrial ROS (hydrogen peroxide) as signaling molecules for apoptosis. For this function, p66Shc utilizes reducing equivalents of the mitochondrial electron transfer chain through the oxidation of cytochrome c. Redox-defective mutants of p66Shc are unable to induce mitochondrial ROS generation and swelling in vitro or to mediate mitochondrial apoptosis in vivo. These data demonstrate the existence of alternative redox reactions of the mitochondrial electron transfer chain, which evolved to generate proapoptotic ROS in response to specific stress signals.
2005
Giorgio, M; Migliaccio, E; Orsini, F; Paolucci, D; Moroni, M; Contursi, C; Pelliccia, G; Luzi, L; Minucci, S; Marcaccio, M; Pinton, Paolo; Rizzuto, Ro...espandi
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/516858
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 997
  • ???jsp.display-item.citation.isi??? 942
social impact