Several pyrazole and pyrazolo[4,3-d]-1,2,3-triazin-4-one ribonucleosides were prepared and tested for antiviral/antitumor activities. Appropriate heterocyclic bases were prepared by standard methodologies. Glycosylation of pyrazoles 6a-e,g,i and of pyrazolo[4,3-d]-1,2,3-triazin-4-ones 12f-1 mediated by silylation with hexamethyldisilazane, with 1-β-O-acetyl-2,3,5-tri-O-benzoyl-D-ribofuranose, gave in good yields the corresponding glycosides 7a-e,g, 8g,i, 13f,h,k, and 14f, but could not be applied to compounds 12g,i,j,l. To overcome this occurrence, a different strategy involving the preparation, diazotization, and in situ cyclization of opportune pyrazole glycosides 9 and 10 was required. Moreover derivatives having the general formula 5 were considered not only as synthetic intermediates in the synthesis of 3 but also as carbon bioisosteres of ribavirin 4. All compounds were evaluated in vitro for cytostatic and antiviral activity. The pyrazolo[4,3-d]-1,2,3-triazin-4-one nucleosides that resulted were substantially devoid of any activity; only 15h,k showed a moderate cytostatic activity against T-cells. However, pyrazole nucleosides 9b,c,e were potent and selective cytotoxic agents against T-lymphocytes, whereas 9e showed a selective, although not very potent, activity against coxsackie B1. © 1992, American Chemical Society. All rights reserved.
Pyrazole-Related Nucleosides. Synthesis and Antiviral/Antitumor Activity of Some Substituted Pyrazole and Pyrazolo[4,3-d]-1,2,3-triazin-4-one Nucleosides
MANFREDINI, Stefano;BARALDI, Pier Giovanni;GUARNERI, Mario;SIMONI, Daniele;
1992
Abstract
Several pyrazole and pyrazolo[4,3-d]-1,2,3-triazin-4-one ribonucleosides were prepared and tested for antiviral/antitumor activities. Appropriate heterocyclic bases were prepared by standard methodologies. Glycosylation of pyrazoles 6a-e,g,i and of pyrazolo[4,3-d]-1,2,3-triazin-4-ones 12f-1 mediated by silylation with hexamethyldisilazane, with 1-β-O-acetyl-2,3,5-tri-O-benzoyl-D-ribofuranose, gave in good yields the corresponding glycosides 7a-e,g, 8g,i, 13f,h,k, and 14f, but could not be applied to compounds 12g,i,j,l. To overcome this occurrence, a different strategy involving the preparation, diazotization, and in situ cyclization of opportune pyrazole glycosides 9 and 10 was required. Moreover derivatives having the general formula 5 were considered not only as synthetic intermediates in the synthesis of 3 but also as carbon bioisosteres of ribavirin 4. All compounds were evaluated in vitro for cytostatic and antiviral activity. The pyrazolo[4,3-d]-1,2,3-triazin-4-one nucleosides that resulted were substantially devoid of any activity; only 15h,k showed a moderate cytostatic activity against T-cells. However, pyrazole nucleosides 9b,c,e were potent and selective cytotoxic agents against T-lymphocytes, whereas 9e showed a selective, although not very potent, activity against coxsackie B1. © 1992, American Chemical Society. All rights reserved.I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.