An optimized variant of the State Dependent Riccati Equations (SDREs) approach for nonlinear optimal feedback stabilization is presented. The proposed method is based on the construction of equivalent semilinear representations associated to the dynamics and their affine combination. The optimal combination is chosen to minimize the discrepancy between the SDRE control and the optimal feedback law stemming from the solution of the corresponding Hamilton Jacobi Bellman (HJB) equation. Numerical experiments assess effectiveness of the method in terms of stability of the closed-loop with near-to-optimal performance.
An optimized variant of the State Dependent Riccati Equations (SDREs) approach for nonlinear optimal feedback stabilization is presented. The proposed method is based on the construction of equivalent semilinear representations associated to the dynamics and their affine combination. The optimal combination is chosen to minimize the discrepancy between the SDRE control and the optimal feedback law stemming from the solution of the corresponding Hamilton Jacobi Bellman (HJB) equation. Numerical experiments assess effectiveness of the method in terms of stability of the closed-loop with near-to-optimal performance.
Optimizing semilinear representations for state-dependent Riccati equation-based feedback control
Saluzzi L.
2022
Abstract
An optimized variant of the State Dependent Riccati Equations (SDREs) approach for nonlinear optimal feedback stabilization is presented. The proposed method is based on the construction of equivalent semilinear representations associated to the dynamics and their affine combination. The optimal combination is chosen to minimize the discrepancy between the SDRE control and the optimal feedback law stemming from the solution of the corresponding Hamilton Jacobi Bellman (HJB) equation. Numerical experiments assess effectiveness of the method in terms of stability of the closed-loop with near-to-optimal performance.I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


