We pursue the study of a model convex functional with orthotropic structure and nonstandard growth conditions, this time focusing on the sub -quadratic case. We prove that bounded local minimizers are locally Lipschitz. No restrictions on the ratio between the highest and the lowest growth rates are needed. The result holds also in presence of a non -autonomous lower order term, under sharp integrability assumptions. Finally, we prove higher differentiability of bounded local minimizers as well.

Singular orthotropic functionals with nonstandard growth conditions

Bousquet, Pierre
Primo
;
Brasco, Lorenzo
Penultimo
;
2024

Abstract

We pursue the study of a model convex functional with orthotropic structure and nonstandard growth conditions, this time focusing on the sub -quadratic case. We prove that bounded local minimizers are locally Lipschitz. No restrictions on the ratio between the highest and the lowest growth rates are needed. The result holds also in presence of a non -autonomous lower order term, under sharp integrability assumptions. Finally, we prove higher differentiability of bounded local minimizers as well.
2024
Bousquet, Pierre; Brasco, Lorenzo; Leone, Chiara
File in questo prodotto:
File Dimensione Formato  
boubraleo_RMI.pdf

accesso aperto

Descrizione: versione editoriale
Tipologia: Full text (versione editoriale)
Licenza: Creative commons
Dimensione 625.23 kB
Formato Adobe PDF
625.23 kB Adobe PDF Visualizza/Apri

I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/2562670
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact