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Singular orthotropic functionals
with nonstandard growth conditions

Pierre Bousquet, Lorenzo Brasco and Chiara Leone

Abstract. We pursue the study of a model convex functional with orthotropic struc-
ture and nonstandard growth conditions, this time focusing on the sub-quadratic case.
We prove that bounded local minimizers are locally Lipschitz. No restrictions on the
ratio between the highest and the lowest growth rates are needed. The result holds
also in presence of a non-autonomous lower order term, under sharp integrability
assumptions. Finally, we prove higher differentiability of bounded local minimizers
as well.

1. Introduction

1.1. Overview

In this paper, we expand on the gradient regularity theory for minimizers of functionals
from the calculus of variations, having an orthotropic structure, in the nonstandard growth
case. This may be seen as a follow up of our previous papers [10] and [12].

Specifically, for an open set � � RN and a set of exponents 1 < p1 � � � � � pN , we
take the anisotropic Sobolev space W 1;p

loc .�/, defined by

W
1;p

loc .�/ D
®
u 2 L1loc.�/ W uxi 2 L

pi
loc.�/; i D 1; : : : ; N

¯
:

Given a function f 2 L1loc.�/, we consider the following functional:

Fp.u;�
0/ WD

NX
iD1

1

pi

Z
�0
juxi j

pi dx �

Z
�0
f udx;

for u 2 W 1;p
loc .�/ \ L

1
loc.�/ and �0 b �.

In the superquadratic case, i.e., for 2 � p1 � � � � � pN <1; and for f � 0, it has
been recently proved in [10] that any local minimizer U 2W 1;p

loc .�/\L
1.�/ is such that

rU 2 L1loc.�;R
N / and jUxi j

.pi�2/=2 Uxi 2 W
1;2

loc .�/; for i D 1; : : : ; N:
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The main goal of this paper is to address the same kind of regularity issues, again for
bounded local minimizers, this time in the subquadratic case

1 < p1 � � � � � pN � 2:

However, we will obtain some regularity results which actually hold in the full range
1 < p1 � � � � � pN <1, see the next section for more details.

We recall that u 2 W 1;p
loc .�/ \ L

1
loc.�/ is a local minimizer of Fp in � if

Fp.u;�
0/ � Fp.';�

0/; for every ' � u 2 W 1;p
0 .�0/ \ L1.�0/ and every �0 b �:

Here we denote by W 1;p
0 .�0/ the completion of C10 .�

0/ with respect to the norm

' 2 C10 .�
0/ 7!

NX
iD1

k'xi kLpi .�0/:

By convexity of Fp , we have that u is a local minimizer if and only if it is a local weak
solution in W 1;p

loc .�/ \ L
1
loc.�/ of the quasilinear equation

�

NX
iD1

�
juxi j

pi�2 uxi
�
xi
D f; in �:

This can be seen as a particular instance of elliptic equation in the wide context of the
Musielak–Orlicz spaces, see [18] for a comprehensive study on the subject.

We emphasize the fact that in this paper we just consider bounded minimizers u. As
a consequence, we discard a priori all the counterexamples to regularity arising in the
literature related to nonstandard growth variational problems, see [38, 40, 49]. For com-
pleteness, we mention that the boundedness of minimizers in this setting has already been
extensively studied, see [37] for the homogeneous case f � 0, and [20, 21] for the non-
homogeneous one, see also [25–28,44]. Moreover, we ignore the problem of the existence
of a minimizer inW 1;p, for which we would also need to assume that f belongs to a suit-
able dual Sobolev space. Here instead, we assume a priori to have a bounded minimizer u
and focus on identifying sharp conditions on the function f needed to obtain its Lipschitz
continuity and higher differentiability.

The main feature of all our regularity results will be that we do not need to impose any
restriction on the ratio pN =p1.

We refer the reader to our previous papers [10–12] for an introduction to the realm of
gradient regularity for minimizers of orthotropic functionals (see also [31] for an approach
based on viscosity methods). We just recall here that already for the standard growth case
p1 D pN D p, the superquadratic case p > 2 is much more involved than the case of the
model functional

L.uI�0/ D

Z
�0
jrujp dx; for u 2 W 1;p

loc .�/ and �0 b �;

as far as the regularity of the gradient of local minimizers is concerned. On the other
hand, the subquadratic case 1 < p < 2 is simpler, in a sense: the Lipschitz continuity for
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minimizers of orthotropic functionals is a consequence of a general result due to Fonseca
and Fusco Theorem 2.2 in [36]), as observed in the introductions of [11] and [12].

In particular, it seems natural to try to adapt the techniques used in [36] since they
allow to establish the Lipschitz regularity for the subquadratic case when p1 D pN D

p < 2. However, we stress that in the case p1 6D pN , our functional pertains to the class
of variational problems with nonstandard growth conditions, following the terminology
of Marcellini in [50, 51]. Then it couples in a nontrivial way the difficulties coming from
the two situations: orthotropic structure and nonstandard growth conditions. Thus, even
if our proof of the Lipschitz regularity is inspired from Theorem 2.2 in [36], nontrivial
adaptations and intermediate results will be needed.

Finally, it is worth recalling that, in spite of a large number of papers and contribu-
tions on anisotropic problems (including for example [6,7,15,17,34,35,41–43,53,57]), a
complete gradient regularity theory is still missing, even for the case of orthotropic struc-
tures. Moreover, we recall that the basic regularity for local minimizers of Fp (i.e., C 0;˛

estimates, Harnack inequalities, and an extension of the De Giorgi’s regularity theory) is
still not fully understood, see however [1, 3] and [48] for some results.

1.2. Main results

Our first result is an higher integrability statement, which is valid without any restriction
on the exponents pi . As we will see in a while, this will be instrumental to the two main
regularity results of this paper. In what follows, we use the notation

(1.1) G0.ru/ D
� NX
iD1

1

pi
juxi j

pi � 1
�
C
C 1;

where . � /C stands for the positive part. This function naturally arises from the principal
part of Fp. It encodes in a natural way the full summability information for each compon-
ent of the gradient. A similar idea has been considered for example in the papers [2,23,24],
dealing with the so-called double phase problems.

Proposition 1.1 (Higher integrability: general growth). Let 1 < p1 � � � � � pN <1 and
let f 2 Lloc.�/, for some  � 2. Then for every local minimizer U 2W 1;p

loc .�/\L
1
loc.�/,

we have
G0.rU/ 2 L


loc.�/:

Moreover, for every ball BR.x0/ b � such that B4R.x0/ b �, as well, we have

(1.2)
Z
BR=2.x0/

G0.rU/
 dx � �1 C �2

Z
BR.x0/

G0.rU/ dx;

for two constants �1; �2 > 0 which depend only on N , pN , p1,  , R, kf kL .B4R.x0// and
kU kL1.B4R.x0//.

Theorem L (Lipschitz regularity: subquadratic growth). Let 1 < p1 � � � � � pN � 2 and
let f 2 Lloc.�/, for some  > N . Then every local minimizer U 2 W 1;p

loc .�/ \L
1
loc.�/ is

locally Lipschitz continuous. Moreover, for every ballBR.x0/b� such thatB4R.x0/b�,
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with R < 1, we have

kG0.rU/kL1.BR=4.x0//

� C
h 1

RN=.�N/

�
�1 C �2

Z
BR.x0/

G0.rU/ dx
�N=.�N/

C
f N=.�N/

L .BR.x0//

i
� kG0.rU/kL1.BR.x0//:

for some C D C.N; pN ; p1; / > 0 and for the same constants �1; �2 as in (1.2).

Observe that the assumption  >N is sharp (in the scale of Lebesgue spaces) to obtain
the Lipschitz continuity ofU . Actually, this is already true when p1D � � � DpN D 2. It is a
remarkable fact that, even in the orthotropic case with nonstandard growth conditions, this
universal assumption on f still leads to Lipschitz continuity. We refer the reader to [4] for
a wide class of variational problems (not including orthotropic structures, however) where
this same condition is known to guarantee Lipschitz continuity of local minimizers.

Theorem S (Sobolev regularity: subquadratic growth). Let 1 < p1 � � � � � pN � 2 and
let

(1.3) f 2 L
1C2=p1
loc .�/:

Then for every local minimizer U 2 W 1;p
loc .�/ \ L

1
loc.�/, we have

Wi WD jUxi j
.pi�2/=2 Uxi 2 W

1;2
loc .�/; for i D 1; : : : ; N;

and
Uxi 2 W

1;p
loc .�/; for i D 1; : : : ; N:

Moreover, for every ball BR.x0/ b � such that B4R.x0/ b �, we have for every
i D 1; : : : ; N ,

NX
iD1

Z
BR=4.x0/

jrWi j
2 dx

�
C

R2

�
�1 C �2

Z
BR.x0/

G0.rU/ dx
�
C CR2=p1�1

Z
BR.x0/

jf j1C2=p1 dx;

and

krUxi kLpi .BR=4.x0/;RN / �
2

pi

Uxi.2�pi /=2Lpi .BR=4.x0//
krWikL2.BR=4.x0/;RN /;

for some C D C.N; pN ; p1/ > 0 and for the same constants �1; �2 as in (1.2), corres-
ponding to the choice  D .p1 C 2/=p1.

1.3. Comparison with known results

In the homogeneous case f D 0, Proposition 1.1 can be obtained as a consequence of
Lemma 4.2 in [46]. In the superquadratic case p1 � 2 and still for f � 0, an alternate
proof can also be found in Proposition 6.1 of [10]. We present here a new proof that takes
into account the presence of the forcing term f . Our argument is certainly more element-
ary than the one in [10], and arguably more natural in our setting than the one in [46], in
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the sense that it strongly relies on some tools that will be repeatedly used in the proofs of
the other main results, see the next section for further comments.

Theorem L is the counterpart for the subquadratic case of our previous result The-
orem 1.1 in [10], which deals with the superquadratic case. We shall explain in the next
section why the two situations require different arguments. We point out that experts in
the field may recognize Theorem L (and Theorem 1.1 in [10], as well) as a particular case
of the main result in [46], at least in the homogeneous case f � 0. However, it turns out
that the proof of Proposition 2.1 in [46] is affected by a crucial flaw, we refer the reader to
Remark 1.4 in [10] for a detailed discussion on this delicate point. In any case, it is fair to
admit that some other parts of Lieberman’s paper [46] have been an important source of
inspiration for the proof of Proposition 1.1.

In Corollary 3.4 of [33], the authors prove the local Lipschitz continuity of local min-
imizers (not a priori bounded) of the following functional:

(1.4)
NX
iD1

1

pi

Z
.1C juxi j

2/pi=2 dx; for
2N

N C 2
< p1 � � � � � pN � 2:

Observe that such a functional has an orthotropic structure, with nonstandard subquad-
ratic growth conditions, exactly as our Fp . However, it should be noticed that the func-
tional (1.4) is neither degenerate nor singular: this is the crucial difference with our case.
Indeed, the Hessian of the function

zG.z/ WD

NX
iD1

1

pi
.1C z2i /

pi=2; for z D .z1; : : : ; zN / 2 RN ;

satisfies

.p1 � 1/.1C jzj
2/.p1�2/=2 j�j2 � hD2 zG.z/ �; �i � j�j2; for z; � 2 RN :

This property fails to be satisfied by our functional, where the integrand is given by

(1.5) G.z/ D

NX
iD1

1

pi
jzi j

pi ; for z 2 RN :

Even worse, in contrast with the general framework of [33], in our situation there are no
continuous functions h1; h2W Œ0;C1/! Œ0;C1/ such that

h1.jzj/ j�j
2
� hD2G.z/ �; �i � h2.jzj/ j�j

2; for z; � 2 RN ;

even for large values of z. Indeed, D2G.z/ is given by the diagonal matrix

D2G.z/ D

264 .p1 � 1/ jz1j
p1�2

: : :

.pN � 1/ jzN j
pN�2

375 ;
and each entry on the diagonal blows-up as the corresponding component of z vanishes.
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As for Theorem S, we observe that this may be seen as a generalization of the fol-
lowing classical result for the p-Laplacian: for 1 < p < 2, any local weak solution u2
W
1;p

loc .�/ of
�div.jrujp�2ru/ D f; in �;

belongs toW 2;p
loc .�/, provided f 2 Lp

0

loc.�/ (see for example [30]). The reader may notice
that for p1 D pN D p, our assumption (1.3) boils down to

f 2 L

loc.�/; for  � 1C

2

p
�

Since for 1 < p < 2 we have 1C 2=p < p0, this is a weaker requirement when compared
with the classical result recalled above. This is not surprising, since we are now assuming
that u is a priori bounded. Such an assumption is responsible for this new feature. In the
standard growth case, this has been recently observed in Theorem 1.2 of [22].

Higher differentiability of local minimizers is a well-studied problem: for the specific
case of orthotropic functionals with subquadratic nonstandard growth, some prior results
can be found for example in Theorem 3 of [6], Corollary 1 of [5], and Theorem 2 of [17].

Finally, in the superquadratic case p1 � 2, as already recalled, the counterpart of The-
orem S has been obtained in Corollary 7.1 of [10], for f � 0. In the case of a right-hand
side f 6� 0, some results have been obtained in Theorem 1.1 of [14] and Corollary 2
of [53] (see also Proposition 3.11 in [55] for an approach based on convex duality, leading
to global estimates on the torus).

Remark 1.2 (On the C 1 regularity). In dimensionN D 2, the C 1 regularity of a Lipschitz
local minimizer essentially follows from Theorem 1.1 in [29], both in the cases p2 � 2
and p1 � 2, provided that f � 0. This assertion is detailed in [8], where the “mixed”
case p1 � 2 � p2 is considered as well. For a slightly different approach, see [47] when
p1 � 2 and [54] when p1 D p2 < 2: these references still deal with the case f � 0.
In the non-homogeneous case, the strategy followed in [9] (and originally written for
p1 D p2 and f � 0) could be adapted to more general situations, provided f satisfies
suitable differentiability and summability conditions. In any case, the C 1 regularity of
local minimizers when N � 3 is entirely open, even for p1 D pN and f � 0.

1.4. Structure of the proofs

The proofs of Proposition 1.1, Theorem L and Theorem S are based on a classical three
steps strategy. We first approximate our local minimizer U 2 W 1;p

loc .�/ \ L
1
loc.�/ by a

sequence of minimizers ¹u"º">0 of regularized functionals Fp;" having good smoothing
properties. We next obtain uniform a priori estimates on these minimizers. Finally, we
pass to the limit in order to transfer these a priori bounds to U .

The first step is usually quite easy: it is sufficient to perturb the initial functional by
adding some uniformly convex "-perturbation and possibly smooth out the coefficients,
for example by replacing f with its mollification f ". This regularization strategy allows
to avoid the usual difference quotient method, and the technicalities that go with its use
in the nonstandard growth setting. However, here we face a first difficulty: remember that
we are not assuming f to be in the correct dual Sobolev space. This also entails that we
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do not have a good a priori L1 estimate at our disposal. Thus, such an approximation
has to be handled with great care. We circumvent this technical difficulty by adding a
nonlinear lower term in the regularized functional, which forces the minimizers u" to be
bounded, with a uniform L1 bound which only depends on the local L1 norm of U (see
Lemma 2.4). This is a technical aspect of the proof, which we believe to have its own
interest. We note that this approach has features in common with [16].

The core of the matter is next to establish the a priori estimates for the gradient of u",
the minimizer of the regularized functional Fp;". As for the estimates leading to Proposi-
tion 1.1 and Theorem L, these are achieved by means of Moser-type schemes: a slow one
and a fast one, respectively.

The cornerstone of these schemes is a Caccioppoli inequality for power functions of
the gradients (see Proposition 3.1). In a simplified way, for every ˛ � 0 this reads as

(1.6)
NX
iD1

Z
juxi j

pi�2
ˇ̌�
G.ru/.˛C1/=2

�
xi

ˇ̌2
dx . .˛ C 1/2

Z
G.ru/˛C2�2=pN dx;

where G is the same function as in (1.5). Here, for simplicity, we put f � 0 and write u
in place of u".

Observe that on the left-hand side of (1.6) we have a weighted gradient of a power
of G.ru/: the weights juxi j

pi�2 are the typical feature of degenerate/singular orthotropic
functionals. The main difficulty in getting regularity results out of this estimate is precisely
due to their presence. In contrast with the Caccioppoli inequality previously obtained in
Lemma 3.1 of [10] to handle the superquadratic case p1 � 2, now these weights do not
pop-up on the right-hand side. This is a crucial ingredient of the estimate: indeed, no
control from above would be possible on juxi j

pi�2 if pi < 2.
Not surprisingly, the proof of (1.6) relies on the differentiated Euler–Lagrange equa-

tion, which is nothing but the equation solved by the components of ru". In a nutshell,
the idea to reach such an estimate not containing the nasty weights juxi j

pi�2 on the right-
hand side is that of using an integration by parts trick: this permits to trade the presence
of the term D2G, with the more tractable one DG. This idea is certainly not new in the
context of singular variational problems: it goes back at least to [52], and has then become
standard in the field.

However, as natural as this idea may appear, its technical implementation in our con-
text needs some efforts: in particular, a careful choice of the test functions for the differ-
entiated equation has to be done. Such a choice must reflect the algebraic structure of the
operator, in a sense. Without entering too much into the details, we refer to the proof of
Proposition 3.1 below. The choice of the correct test functions here has been suggested to
us by [46], even if our choice seems to be simpler and more natural.

The Caccioppoli inequality (1.6) is first used in the proof of the higher integrability
result of Proposition 1.1. More specifically, it permits to obtain a self-improving estimate
of the type

(1.7)
Z
G.ru/ˇC1 dx . kuk2L1 ˇ

2

Z
G.ru/ˇC1�2=pN dx:

This is the slow Moser iteration scheme we were referring to above: by iterating (1.7) a
finite number of times, we can conclude that G.ru/ (and thus ru itself) can be estimated
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in Lq , for every finite q � 1. Observe that the additive integrability gain at each step and
the presence of the factor ˇ2 on the right-hand side make the previous scheme not suitable
for being iterated infinitely many times. This explains why we cannot reach the limiting
case ru 2 L1 with this approach.

Estimates like (1.7) are quite typical in regularity theory, both in the contexts of stand-
ard and nonstandard growth problems (among others, see for example Proposition 3.1
in [32] and Theorem 3 in [19], respectively). Usually, they are obtained by coupling an
integration by parts with a Caccioppoli inequality for the gradient, like the one (1.6) at our
disposal. The L1 bound on the solution is used to treat the solution itself as a constant in
the estimates.

We stress here that in this part of the proofs we do not need the restriction pN � 2.
Thus, in particular, we can extend and simplify the higher integrability result we previ-
ously obtained1 in Proposition 4.3 of [10].

With the aid of (1.7), in the case pN � 2 we can transpose to our situation the typ-
ical absorption trick which lies at the basis of the Lipschitz estimate for the standard
p-Laplacian (see for example [32], Section 3). Up to some nontrivial technical issues, this
consists in observing that when G.ru/ � 1, we have

juxi j
pi�2 & G.ru/.p1�2/=p1 ; since pi � 2 � 0;

and thus

(1.8)
NX
iD1

Z
juxi j

pi�2
ˇ̌�
G.ru/.˛C1/=2

�
xi

ˇ̌2
dx &

NX
iD1

Z ˇ̌�
G.ru/.˛C2/=2�1=p1

�
xi

ˇ̌2
dx:

The weights juxi j
pi�2 have then been absorbed into a suitable power function of the gradi-

ent. In this sense, in the case pN � 2, the presence of the weights juxi j
pi�2 on the left-hand

side of (1.7) helps, more than it hurts.
At this point, by joining (1.8) and (1.7), the orthotropic nature of the problem com-

pletely disappears and we simply fall into the realm of nonstandard growth problems. A
standard application of the Sobolev inequality makes then possible to launch a standard
Moser iterative scheme (i.e., a fast one, with a multiplicative gain of integrability at each
step). This permits to reach an L1-Lq estimate on G.ru/, after infinitely many iter-
ations. This is not the end of the story. Indeed, we still have to pay attention to a detail
which is quite typical of the nonstandard growth case: the exponent q in this a priori estim-
ate could be too large. However, this preliminary estimate can be “rectified” by combining
the higher integrability result of Proposition 1.1 together with an interpolation trick which
decreases the initial integrability requirement on G.ru/. We then finally get a L1-L1

estimate on G.ru/, as desired.
In contrast to Proposition 1.1 and Theorem L, the proof of Theorem S does not rely

on the Caccioppoli inequality of Proposition 3.1. The proof follows the same idea as in

1There is however a subtle detail here: the result in [10] was obtained through a complicate self-improving
iterative scheme (inspired from that of Theorem 1.1 in [7]), which was not of Moser-type. Actually, this was
much more sophisticated and could be roughly described as follows: improvement of integrability of N � 1
components of the gradient entails that the missing one improves its integrability as well.
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the case of the result for the familiar p-Laplacian, for the case 1 < p < 2: we test the
differentiated equation with the gradient itself uxk and perform an integration by parts as
in Naumann’s trick [52]. Again, this permits to avoid using the undesired upper bound on
the Hessian D2G. In order to conclude, one has to control from above terms of the form

uxkxk juxi j
pi�1:

Observe that for every k 6D i , the two terms are completely decoupled. However, when
pi � 2, we can simply estimate this term from above by Young’s inequality:

uxkxk juxi j
pi�1 . juxk j

pk�2 juxkxk j
2
C juxk j

2�pk juxi j
2 .pi�1/:

The first term is absorbed on the left-hand side, while the second term can be estimated
from above by means of an integrability estimate (here we rely again on the information
provided by Proposition 1.1). This explains why we require pN � 2 in the statement of
Theorem S.

1.5. Plan of the paper

In Section 2, we present the approximation scheme and some basic material used all along
the paper. Section 3 contains the crucial Caccioppoli-type inequality for the gradient (Pro-
position 3.1). The latter is exploited in Section 4 to perform the slow Moser iteration
leading to the higher integrability estimate needed in Proposition 1.1. The Lipschitz bound
related to Theorem L is proved in Section 5, while Section 6 is devoted to the proof of
the higher differentiability estimates corresponding to Theorem S. Then, in Section 7,
we eventually prove our three main results by passing to the limit in the approximation
scheme. Finally, for completeness, we include in Appendix A the proof of a maximum
principle ensuring the uniform boundedness of the approximating sequence.

2. Preliminaries

In this section, we fix 1 < p1 � p2 � � � � � pN <1:

2.1. Some auxiliary functions

For every i D 1; : : : ; N and " > 0, we define

(2.1) gi;".t/ D
1

pi
."C t2/pi=2; for every t 2 R:

Lemma 2.1 (Sub-quadratic case). Let 1 < pi � 2. Then for every t 2 R, we have

.pi � 1/ ."C t
2/.pi�2/=2 � g00i;".t/ � ."C t

2/.pi�2/=2;(2.2)

gi;".t/ �
1

pi
."pi=2 C g0i;".t/ t/;(2.3)

jg0i;".t/j
2
�

pi

pi � 1
g00i;".t/ gi;".t/:(2.4)
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Proof. The second derivative of gi;" is given by

g00i;".t/ D ."C t
2/.pi�2/=2 C .pi � 2/ ."C t

2/.pi�4/=2 t2

D ."C t2/.pi�2/=2
�
1C .pi � 2/

t2

"C t2

�
:

In particular, by using that pi � 2 � 0, we easily get (2.2).
We also observe that

gi;".t/ D
1

pi
."C t2/pi=2 D

1

pi
."C t2/.pi�2/=2 "C

1

pi
."C t2/.pi�2/=2 t2

�
"pi=2

pi
C
g0i;".t/

pi
t;

which proves (2.3).
Finally, (2.4) follows by writing

jg0i;".t/j
2
D ."C t2/.pi�2/=2 ."C t2/.pi�2/=2 t2 � ."C t2/.pi�2/=2 ."C t2/pi=2;

and then using the definition of gi;" and the lower bound in (2.2).

Lemma 2.2 (Super-quadratic case). Let pi > 2. Then for every t 2 R, we have

."C t2/.pi�2/=2 � g00i;".t/ � .pi � 1/ ."C t
2/.pi�2/=2;(2.5)

gi;".t/ �
2.pi�2/=2

pi
."pi=2 C g0i;".t/ t/;(2.6)

jg0i;".t/j
2
� pi g

00
i;".t/ gi;".t/:(2.7)

Proof. The proofs of (2.5) and (2.7) are similar to those of (2.2) and (2.4) respectively,
and we omit them. In order to prove (2.6), we use the convexity of the map � 7! j� jpi=2.
This implies

(2.8) gi;".t/ D
1

pi
."C t2/pi=2 �

2.pi�2/=2

pi
."pi=2 C jt jpi /:

We then observe that

jt jpi D jt jpi�2 t2 � ."C t2/.pi�2/=2 t2 D g0i;".t/ t:

By combining the last two inequalities, we get (2.6).

We also define the function

(2.9) G".z/ WD

NX
iD1

gi;".zi / D

NX
iD1

1

pi
."C z2i /

pi=2;

which will play a crucial role in our estimates. The next result holds without any restriction
on pi .
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Lemma 2.3. For every z D .z1; : : : ; zN / 2 RN and every i D 1; : : : ; N , we have

(2.10) jg0i;".zi /j � p
.pN�1/=pN
N G".z/

.pi�1/=pi :

Proof. By recalling the definition of both gi;" and G", we have

jg0i;".zi /j � ."C jzi j
2/.pi�1/=2 D

�
pi gi;".zi /

�.pi�1/=pi
�

� NX
kD1

pk gk;".zk/
�.pi�1/=pi

� p
.pi�1/=pi
N G".z/

.pi�1/=pi :

By using that pN > 1 and that pi � pN , we can estimate the last term from above as
claimed.

2.2. Regularized problems

We will use an approximation scheme which is similar to that already used in our pre-
vious papers, starting from [11], Section 2. We want to consider local minimizers of the
following convex integral functional:

Fp.uI�
0/ D

NX
iD1

1

pi

Z
�0
juxi j

pi dx �

Z
�0
f udx; u2 W

1;p
loc .�/ \ L

1
loc.�/; �

0 b �:

The function f is assumed to belong to L1loc.�/. In the rest of the paper, we fix U 2
W
1;p

loc .�/ \ L
1
loc.�/ a bounded local minimizer of Fp. We also fix a ball

B b � such that 2B b � as well:

Here by �B we denote the ball concentric with B , scaled by a factor � > 0. We set

"0 D min
°
1;

radius of B
2

±
> 0:

For every 0 < " � "0, we denote by %" the usual Friedrichs mollifier, supported in a ball
of radius " centered at the origin. For every x 2 B , we then define

U ".x/ D U � %".x/ and f ".x/ D f � %".x/:

Finally, we set
M WD kU kL1.2B/;

and take �" to be a C1 function of one variable, such that

0 � .�"/0 � 1 and �".t/ D

²
M; if t �M C ";
�M; if t � �M � ";

and such that

lim
"!0
k�" � �kL1.R/ D 0; where �.t/ D max¹min¹t;M º;�M º; for t 2 R:
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By recalling the definition (2.1) of gi;", we then define the regularized functional

Fp;".vIB/ D

NX
iD1

Z
B

gi;".vxi / dx �

Z
B

f " �".v/ dx:

Lemma 2.4 (Existence and regularity of a minimum for Fp;"). For every 0 < " � "0, the
problem

(2.11) min
®
Fp;".vIB/ W v � U

"
2 W

1;p
0 .B/

¯
;

admits a solution u", which belongs to C1.B/. Moreover, for every 0 < " � "0, we have

ku"kL1.B/ �M C ":

Proof. We first show that we can apply Theorem 9.2 in [56] and get existence of a solu-
tion to

(2.12) min
®
Fp;".vIB/ W v � U

"
2 W

1;1
0 .B/

¯
:

For this, we check the required assumptions. We first claim that, for every z; � 2 RN ,

(2.13)
NX
iD1

g00i;".zi / �
2
i � �" .1Cjzj

2/� j�j2; with

´
�" WD min

®
p1�1; "

.pN�2/=2
¯
> 0;

� WD min
®
0; .p1�2/=2

¯
> �1=2:

From (2.2) and (2.5), we get

NX
iD1

g00i;".zi / �
2
i �

NX
iD1

min¹pi � 1; 1º ."C z2i /
.pi�2/=2 �2i :

Then we observe that if pi � 2, then p1 � 2, and we can write

min¹pi � 1; 1º ."C z2i /
.pi�2/=2 � .p1 � 1/ .1C jzj

2/.p1�2/=2 D .p1 � 1/ .1C jzj
2/� :

If instead pi > 2, then

min¹pi � 1; 1º ."C z2i /
.pi�2/=2 � ".pN�2/=2 � ".pN�2/=2 .1C jzj2/� :

Thus, in both cases, (2.13) holds.
As for the lower order term, observe that the smooth function h".x;u/ WD f ".x/ �".u/

satisfies

@h"

@u
.x; u/ D 0; for every .x; u/ 2 B � .R n .�M � ";M C "//:

Finally, the uniform convexity ofB and the smoothness of U " entail that the latter satisfies
the bounded slope condition.

Then Theorem 9.2 in [56] yields the existence of a solution to (2.12). Since all the data
are smooth, Theorem 9.3 in [56] implies that u" 2 C1.B/. We claim that u" is a solution
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of (2.11), as well. Indeed, by using Theorem 1.1 in [13], for every v 2 U "CW 1;p
0 .B/, we

can infer the existence of ¹vkºk2N � U
" CW

1;1
0 .B/ converging to v in W 1;p1.B/ and

such that

lim
k!1

NX
iD1

Z
B

gi;".v
k
xi
/ dx D

NX
iD1

Z
B

gi;".vxi / dx:

By the dominated convergence theorem and the uniform boundedness of �", we also have

lim
k!1

Z
B

f " �".vk/ dx D

Z
B

f " �".v/ dx:

This proves that there is no Lavrentiev phenomenon for Fp;", that is,

Fp;".u
"
IB/ D min

U "CW
1;1
0 .B/

Fp;" D inf
U "CW

1;p
0 .B/

Fp;":

Thus, we get that u" solves (2.11), as well. Finally, the claimed L1 estimate readily
follows from Lemma A.1 in the Appendix.

The smooth minimizer u" satisfies the Euler–Lagrange equation

(2.14)
NX
iD1

Z
g0i;".u

"
xi
/ 'xi dx D

Z
f ".�"/0.u"/ ' dx; for every ' 2 W 1;p

0 .B/:

For every k D 1; : : : ; N , one can insert test functions of the form 'xk , with ' 2 C 2

compactly supported in B . By integrating by parts, we then get the equation for the partial
derivatives of u": for every k D 1; : : : ; N ,

(2.15)
NX
iD1

Z
g00i;".u

"
xi
/ u"xk xi'xi dx D

Z �
f " .�"/0 .u"/

�
xk
' dx:

As usual, by a density argument, the equation can be tested by any ' 2 W 1;p
0 .B/.

The first ingredient of our recipe is a simple a priori estimate, which is essentially the
same as in Lemma 2.1 of [10]: the only difference is the presence of the non-autonomous
and nonlinear term f " �".v/, together with a slight modification of the function gi;".

Lemma 2.5 (Basic energy estimate). For every 0 < "� "0, the following uniform estimate
holds:

NX
iD1

1

pi

Z
B

ju"xi j
pi dx � C

� NX
iD1

1

pi

Z
2B

jUxi j
pi dx C "p1=2 C kf kL1.2B/

�
;

for some C D C.N;B;p;M/ > 0.

Proof. By testing the minimality of u" against U ", we obtain

NX
iD1

Z
B

gi;".u
"
xi
/ dx �

NX
iD1

Z
B

gi;".U
"
xi
/ dx �

Z
B

f "
�
�".U "/ � �".u"/

�
dx:
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The convexity of the function gi;" allows to apply Jensen’s inequality in connection with
the fact that U " is defined by a convolution. This givesZ

B

gi;".U
"
xi
/ dx �

Z
B

gi;".Uxi / � %" dx �

Z
2B

gi;".Uxi / dx:

By using also that gi;".t/ � jt jpi =pi and the 1-Lipschitz character of �", we get

NX
iD1

1

pi

Z
B

ju"xi j
pi dx �

NX
iD1

Z
2B

gi;".Uxi / dx C

Z
B

jf "j jU " � u"j dx

�

NX
iD1

Z
2B

gi;".Uxi / dx C CM kf kL1.2B/;

where CM is a positive constant which only depends onM . We finally rely on (2.8) when
pi > 2, or the subadditivity of t 7! jt jpi=2 when pi � 2, to obtain

(2.16) gi;".t/ �
max¹1; 2.pi�2/=2º

pi
."pi=2 C jt jpi /:

This concludes the proof.

In view of our goal, we need a convergence result for the minimizers ¹u"º0<"<"0 . This
is the content of the next lemma, which is an extension of Lemma 2.2 in [10].

Lemma 2.6 (Convergence to a minimizer). With the same notation as above, we have

(2.17) lim
"!0

h
ku" � U kLq.B/ C

NX
iD1

k.u" � U/xi kLpi .B/

i
D 0;

for every 1 � q <1.

Proof. The proof goes as in Lemma 2.2 of [10]. We repeat the argument, since this gives
us the occasion to fix some missing details in [10]. By using the uniform estimate of
Lemma 2.5 and the definition of U ", we get that ¹u" � U "º0<"�"0 is a bounded family in
W
1;p
0 .B/. Thanks to Lemma 2.4, we also have that ¹u" � U "º0<"�"0 is a bounded family

in L1.B/. From these two facts, we can infer the existence of an infinitesimal sequence
¹"kºk2N � .0; "0� such that ¹u"k � U "k ºk2N converges weakly in W 1;p

0 .B/ and almost
everywhere to a function � 2 W 1;p

0 .B/ \ L1.B/, in the sense that

lim
k!1

Z
B

.u"k � U "k / ' dx D

Z
B

�' dx; for every ' 2 L1.B/;

and

lim
k!1

Z
B

.u"k � U "k /xi ' dx D

Z
B

�xi ' dx; for every ' 2 Lp
0
i .B/; i D 1; : : : ; N:

By recalling that U "k has been constructed by convolution, we also have that it converges
strongly inW 1;p.B/ and almost everywhere to U . This permits to conclude that ¹u"k ºk2N
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converges weakly and almost everywhere to u WD � C U . We need to prove that actually
u D U . With this aim, we test the minimality of each u"k against the function U "k . Thus,
by lower semicontinuity of the Lpi norms, we can infer

NX
iD1

1

pi

Z
B

juxi j
pi dx � lim inf

k!1

NX
iD1

1

pi

Z
B

ju"kxi j
pi dx � lim inf

k!1

NX
iD1

1

pi

Z
B

gi;"k .u
"k
xi
/ dx

� lim
k!1

NX
iD1

1

pi

Z
B

gi;"k .U
"k
xi
/ dx �

Z
B

f "k
�
�"k .U "k / � �"k .u"k /

�
dx

D

NX
iD1

1

pi

Z
B

jUxi j
pi dx �

Z
B

f .�.U / � �.u// dx:(2.18)

Observe that for the convergence of the lower order term, we used that f "k converges
strongly in L1.B/, that U "k and u"k are equibounded in L1.B/ and converge almost
everywhere to U and u respectively, and that �"k converges uniformly to the Lipschitz
function �. This shows that

NX
iD1

1

pi

Z
B

juxi j
pi dx �

Z
�0
f �.u/ dx �

NX
iD1

1

pi

Z
B

jUxi j
pi dx �

Z
�0
f �.U / dx:

The L1-boundedness of u" proved in Lemma 2.4, gives that kukL1.B/ � M . A similar
estimate holds for U by assumption. Since �.t/ D t for every t 2 Œ�M;M�, one gets

Fp.uIB/ � Fp.U IB/:

By the strict convexity of the functional Fp, the minimizer must be unique and thus we
get u D U , as desired.

In order to prove (2.17), we can adapt the argument of Lemma 2.2 in [10]. By (2.18),
we get

(2.19) lim
k!1

NX
iD1

1

pi

Z
B

ju"kxi j
pi dx D

NX
iD1

1

pi

Z
B

jUxi j
pi dx:

For every i D 1; : : : ; N , we rely on the lower semicontinuity of the Lpi norm to get

lim inf
k!1

Z
B

ju"kxi j
pi dx �

Z
B

jUxi j
pi dx;

In connection with (2.19), this implies that

lim
k!1

Z
B

ju"kxi j
pi dx D

Z
B

jUxi j
pi dx:

The convergence of the norms, in conjunction with the weak convergence, permits to
infer that .u"kxi /k2N converges to Uxi in Lpi .B/ for every i D 1; : : : ; N (see for example
Theorem 2.11 in [45]).
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Moreover, since ¹u"k ºk2N is bounded by M and converges almost everywhere in B
to U , the dominated convergence theorem implies that .u"k /k2N converges to U inLq.B/
for every 1 � q <1.

Finally, we observe that we can repeat this argument with any subsequence of the
original family ¹u"º">0. Thus the above limit holds true for the whole family ¹u"º0<"�"0
instead of ¹u"k ºk2N and (2.17) follows.

The following technical result is classical in the regularity theory. This is taken from
Lemma 6.1 in [39], and we state it here for the reader’s convenience.

Lemma 2.7. Let 0 < r < R and let ZW Œr; R�! Œ0;1/ be a bounded function. Assume
that for r � s < t � R, we have

Z.s/ �
A

.t � s/˛0
C

B

.t � s/ˇ0
C C C #Z.t/;

with A;B;C � 0, ˛0 � ˇ0 > 0 and 0 � # < 1. Then we have

Z.r/ �
� 1

.1 � �/˛0

�˛0

�˛0 � #

� h A

.R � r/˛0
C

B

.R � r/ˇ0
C C

i
;

where � is any number such that #1=˛0 < � < 1.

3. Caccioppoli-type inequalities for the gradient

Throughout this section, we assume that 1 < p1 � � � � � pN , without any further restric-
tion. In what follows, we will use the function

(3.1) G".z/ D ..G".z/ � 1/C C 1/; for every z 2 RN ;

where G" is the same function as in (2.9).

Proposition 3.1 (Caccioppoli inequality for power functions of the gradient). Let 1 <
p1 � p2 � � � � � pN <1. For every ˛ � 0 and every non-negative � 2 C 20 .B/, we have

(3.2)

NX
iD1

Z
g00i;".u

"
xi
/
ˇ̌
.G".ru

"/.˛C1/=2/xi
ˇ̌2
�2 dx

� C.˛ C 1/2
Z

G".ru
"/˛C2�2=pN .jr�j2 C � jD2�j/ dx

C C.˛ C 1/2
Z
jf "j2 G".ru

"/˛ �2 dx;

for some C D C.N; p1; pN / > 0.

Proof. We are going to use a trick based on integration by parts, taken from Theorem 1
in [52] (see also [36]). This permits to circumvent the use of the upper bound on the
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Hessian of the function G". We start by fixing k 2 ¹1; : : : ; N º and inserting in (2.15) the
test function

' D F.G".ru
"// g0k;".u

"
xk
/�2;

where F is a non-negative Lipschitz continuous monotone non-decreasing function, that
will be specified later on. This is a feasible test function, thanks to the regularity of u".
Thus we get

NX
iD1

Z
g00i;".u

"
xi
/ u"xk xi .F.G".ru

"///xi g
0
k;".u

"
xk
/�2 dx

C

NX
iD1

Z
g00i;".u

"
xi
/ u"xk xi F.G".ru

"//
�
g0k;".u

"
xk
/
�
xi
�2 dx

D �2

NX
iD1

Z
g00i;".u

"
xi
/ u"xk xi F.G".ru

"// g0k;".u
"
xk
/ � �xi dx(3.3)

C

Z
.f ".�"/0.u"//xk F.G".ru

"// g0k;".u
"
xk
/�2 dx:

We observe that
g00i;".u

"
xi
/ u"xk xi D

�
g0i;".u

"
xi
/
�
xk
:

Then by integrating by parts on the right-hand side2 of (3.3), we obtain

(3.4)

NX
iD1

Z
g00i;".u

"
xi
/ u"xk xi .F.G".ru

"///xi g
0
k;".u

"
xk
/�2 dx

C

NX
iD1

Z
g00i;".u

"
xi
/ u"xk xi F.G".ru

"//
�
g0k;".u

"
xk
/
�
xi
�2 dx

D 2

NX
iD1

Z
g0i;".u

"
xi
/ .F.G".ru

"///xk g
0
k;".u

"
xk
/ � �xi dx

C 2

NX
iD1

Z
g0i;".u

"
xi
/ F.G".ru

"//
�
g0k;".u

"
xk
/
�
xk
� �xi dx

C 2

NX
iD1

Z
g0i;".u

"
xi
/ F.G".ru

"// g0k;".u
"
xk
/ .�xk �xi C � �xi xk / dx

C

Z
.f ".�"/0.u"//xk F.G".ru

"// g0k;".u
"
xk
/�2 dx:

This is valid for every k D 1; : : : ; N , we then take the sum over k.

2This is the trick in [52] (and [36]) mentioned above.
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On the left-hand side, the first term then becomes

NX
i;kD1

Z
g00i;".u

"
xi
/ u"xk xi .F.G".ru

"///xi g
0
k;".u

"
xk
/�2 dx

D

NX
i;kD1

Z
g00i;".u

"
xi
/ .F.G".ru

"///xi
�
gk;".u

"
xk
/
�
xi
�2 dx

D

NX
iD1

Z
g00i;".u

"
xi
/ .F.G".ru

"///xi

� NX
kD1

gk;".u
"
xk
/
�
xi
�2 dx

D

NX
iD1

Z
g00i;".u

"
xi
/ .F.G".ru

"///xi
�
G".ru

"/
�
xi
�2 dx

D

NX
iD1

Z
g00i;".u

"
xi
/ F 0.G".ru

"//
ˇ̌�
G".ru

"/
�
xi

ˇ̌2
�2 dx:

For the second term of the left-hand side in (3.4), we observe that

NX
i;kD1

Z
g00i;".u

"
xi
/ u"xk xi F.G".ru

"//
�
g0k;".u

"
xk
/
�
xi
�2 dx

D

NX
i;kD1

Z
g00i;".u

"
xi
/ ju"xk xi j

2 F.G".ru
"// g00k;".u

"
xk
/�2 dx;

and this is non-negative, since each gk;" is convex and F � 0. We thus obtain

(3.5)

NX
iD1

Z
g00i;".u

"
xi
/ F 0.G".ru

"//
ˇ̌�
G".ru

"/
�
xi

ˇ̌2
�2 dx

C

NX
i;kD1

Z
g00i;".u

"
xi
/ ju"xk xi j

2 F.G".ru
"// g00k;".u

"
xk
/�2 dx

D 2

NX
i;kD1

Z
g0i;".u

"
xi
/ .F.G".ru

"///xk g
0
k;".u

"
xk
/ � �xi dx

C 2

NX
i;kD1

Z
g0i;".u

"
xi
/ F.G".ru

"//
�
g0k;".u

"
xk
/
�
xk
� �xi dx

C 2

NX
i;kD1

Z
g0i;".u

"
xi
/ F.G".ru

"// g0k;".u
"
xk
/ .�xk �xi C � �xi xk / dx

C

NX
kD1

Z
.f ".�"/0.u"//xk F.G".ru

"// g0k;".u
"
xk
/�2 dx:
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By (2.14), the second term of the right-hand side can be written as

(3.6) �2

NX
iD1

Z
g0i;".u

"
xi
/ F.G".ru

"// f ".�"/0.u"/ � �xi dx:

By an integration by parts and (2.14) again, the last term on the right-hand side of (3.5) is
equal to

�

NX
kD1

Z
f ".�"/0.u"/ .F.G".ru

"///xk g
0
k;".u

"
xk
/�2 dx

C

Z
jf ".�"/0.u"/j2 F.G".ru

"//�2 dx

� 2

NX
kD1

Z
f ".�"/0.u"/ F.G".ru

"// g0k;".u
"
xk
/ � �xk dx:

We observe that the third term in the above sum is equal to the quantity in (3.6). So (3.5)
is equivalent to

I1 C I2 WD

NX
iD1

Z
g00i;".u

"
xi
/ F 0.G".ru

"//
ˇ̌�
G".ru

"/
�
xi

ˇ̌2
�2 dx

C

NX
i;kD1

Z
g00i;".u

"
xi
/ ju"xk xi j

2 F.G".ru
"// g00k;".u

"
xk
/�2 dx

D 2

NX
i;kD1

Z
g0i;".u

"
xi
/ .F.G".ru

"///xk g
0
k;".u

"
xk
/ � �xi dx

� 4

NX
iD1

Z
g0i;".u

"
xi
/ F.G".ru

"// f ".�"/0.u"/ � �xi dx

C 2

NX
i;kD1

Z
g0i;".u

"
xi
/ F.G".ru

"// g0k;".u
"
xk
/ .�xk �xi C � �xi xk / dx

�

NX
kD1

Z
f ".�"/0.u"/ .F.G".ru

"///xk g
0
k;".u

"
xk
/�2 dx

C

Z
jf ".�"/0.u"/j2 F.G".ru

"//�2 dx

DW 2 I3 C 4F1 C 2 I4 C F2 C F3:(3.7)
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We first estimate I3: by Young’s inequality, we have for every � > 0,

jI3j �

Z NX
kD1

� NX
iD1

jg0i;".u
"
xi
/j
� �
F 0.G".ru

"//
ˇ̌�
G".ru

"/
�
xk
g0k;".u

"
xk
/
ˇ̌�
� jr�j dx

�
1

2�

Z � NX
iD1

jg0i;".u
"
xi
/j
�2
F 0.G".ru

"//
� NX
kD1

.g0
k;"
.u"xk //

2

g00
k;"
.u"xk /

�
jr�j2

C
�

2

Z NX
kD1

F 0.G".ru
"//
ˇ̌�
G".ru

"/
�
xk

ˇ̌2
g00k;".u

"
xk
/�2 dx

�
1

2�

Z � NX
iD1

jg0i;".u
"
xi
/j
�2
F 0.G".ru

"//
� NX
kD1

.g0
k;"
.u"xk //

2

g00
k;"
.u"xk /

�
jr�j2 dx C

�

2
I1:

By taking � D 1=2, we can absorb the term I1 on the right-hand side and obtain from (3.7)
the following:

1

2
I1 C I2 � 2

Z � NX
iD1

jg0i;".u
"
xi
/j
�2
F 0.G".ru

"//
� NX
kD1

�
g0
k;"
.u"xk /

�2
g00
k;"
.u"xk /

�
jr�j2 dx(3.8)

C 4F1 C 2 I4 C F2 C F3:

The term

I4 D

NX
i;kD1

Z
g0i;".u

"
xi
/ F.G".ru

"// g0k;".u
"
xk
/ .�xk �xi C � �xi xk / dx

is easier to handle: we simply have

jI4j �

Z � NX
iD1

jg0i;".u
"
xi
/j
�2
F.G".ru

"// .jr�j2 C � jD2�j/ dx:

In conclusion, from (3.8) we get

(3.9)

I1 C 2 I2 � 4

Z � NX
iD1

jg0i;".u
"
xi
/j
�2
F 0.G".ru

"//
� NX
kD1

.g0
k;"
.u"xk //

2

g00
k;"
.u"xk /

�
jr�j2 dx

C 8F1 C 4

Z � NX
iD1

jg0i;".u
"
xi
/j
�2
F.G".ru

"// .jr�j2C� jD2�j/ dx

C 2F2 C 2F3:
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We now treat the three terms containing f ": we start from

F1 D �

NX
iD1

Z
g0i;".u

"
xi
/ F.G".ru

"// f ".�"/0.u"/ � �xi dx

�

Z NX
iD1

jg0i;".u
"
xi
/jF.G".ru

"// jf ".�"/0.u"/j � jr�j dx

�
1

2

Z � NX
iD1

g0i;".u
"
xi
/
�2
F.G".ru

"// jr�j2 dx

C
1

2

Z
jf ".�"/0.u"/j2 F.G".ru

"//�2 dx:

The last term coincides with 1
2
F3 while the first term is bounded from above (up to a

multiplicative constant) by the third term on the right-hand side of (3.9) . Using also that
k.�"/0kL1.R/ � 1, we thus get, from (3.9),

(3.10)

I1 C 2 I2 � 4

Z � NX
iD1

jg0i;".u
"
xi
/j
�2
F 0.G".ru

"//
� NX
kD1

.g0
k;"
.u"xk //

2

g00
k;"
.u"xk /

�
jr�j2 dx

C 8

Z � NX
iD1

jg0i;".u
"
xi
/j
�2
F.G".ru

"//
�
jr�j2 C � jD2�j

�
dx

C 6

Z
jf "j2 F.G".ru

"//�2 dx C 2F2:

The last term F2 contains second order derivatives of u" that should be absorbed on
the left-hand side. We proceed similarly as for I3 and estimate it as follows:

F2 D �

NX
kD1

Z
f ".�"/0.u"/ .F.G".ru

"///xk g
0
k;".u

"
xk
/�2 dx

�

NX
kD1

Z
jf "j

�
F 0.G".ru

"//
ˇ̌�
G".ru

"/
�
xk
g0k;".u

"
xk
/
ˇ̌�
�2 dx

�
1

2�

NX
kD1

Z
jf "j2 F 0.G".ru

"//
.g0
k;"
.u"xk //

2

g00
k;"
.u"xk /

�2 dx

C
�

2

NX
kD1

Z
F 0.G".ru

"//
ˇ̌�
G".ru

"/
�
xk

ˇ̌2
g00k;".u

"
xk
/�2 dx

D
1

2�

NX
kD1

Z
jf "j2 F 0.G".ru

"//
.g0
k;"
.u"xk //

2

g00
k;"
.u"xk /

�2 dx C
�

2
I1:

thanks to Young’s inequality. Here, as always, � > 0 is arbitrary.
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By inserting this estimate in (3.10) and choosing � D 1=2, we obtain

I1 C 4 I2 � 8

Z � NX
iD1

jg0i;".u
"
xi
/j
�2
F 0.G".ru

"//
� NX
kD1

.g0
k;"
.u"xk //

2

g00
k;"
.u"xk /

�
jr�j2 dx

C 16

Z � NX
iD1

jg0i;".u
"
xi
/j
�2
F.G".ru

"//
�
jr�j2 C � jD2�j

�
dx

C 12

Z
jf "j2 F.G".ru

"//�2 dx C 4

NX
kD1

Z
jf "j2 F 0.G".ru

"//
.g0
k;"
.u"xk //

2

g00
k;"
.u"xk /

�2 dx:

We observe that if we set

(3.11) ık D max
° pk

pk � 1
; pk

±
and ı D max

kD1;:::;N
ık D max

° p1

p1 � 1
; pN

±
;

by (2.4) or (2.7), we have

(3.12)
NX
kD1

.g0
k;"
.u"xk //

2

g00
k;"
.u"xk /

�

NX
kD1

ık gk;".u
"
xk
/ � ı G".ru

"/:

Thus we have obtained

I1 C 4 I2 � 8 ı

Z � NX
iD1

jg0i;".u
"
xi
/j
�2
F 0.G".ru

"//G".ru
"/ jr�j2 dx

C 16

Z � NX
iD1

jg0i;".u
"
xi
/j
�2
F.G".ru

"//
�
jr�j2 C � jD2�j

�
dx

C 12

Z
jf "j2 F.G".ru

"//�2 dx C 4xı

Z
jf "j2 F 0.G".ru

"//G".ru
"/�2 dx:(3.13)

We now use Lemma 2.3 to estimate from above the right-hand side. Thus, from (3.13), we
get
(3.14)
I1 C 4I2

� 8xı .p
.pN�1/=pN
N /2

Z � NX
iD1

G".ru
"/.pi�1/=pi

�2
F 0.G".ru

"//G".ru
"/ jr�j2 dx

C 16.p
.pN�1/=pN
N /2

Z � NX
iD1

G".ru
"/.pi�1/=pi

�2
F.G".ru

"//
�
jr�j2C� jD2�j

�
dx

C 12xı

Z
jf "j2

�
F.G".ru

"//C F 0.G".ru
"//G".ru

"/
�
�2 dx:

By recalling the definition (3.1) of G", we observe that

G".ru
"/ � G".ru

"/ and G".ru
"/ � 1:
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Thus, in particular, we get

NX
iD1

G".ru
"/.pi�1/=pi � N G".ru

"/.pN�1/=pN ;

and from (3.14), we obtain

I1 C 4I2 � 8 ı
�
Np

.pN�1/=pN
N

�2 Z
G".ru

"/2.pN�1/=pNC1 F 0.G".ru
"// jr�j2 dx

C 16.Np
.pN�1/=pN
N /2

Z
G".ru

"/2.pN�1/=pNF.G".ru
"//
�
jr�j2C� jD2�j

�
dx

C 12xı

Z
jf "j2

�
F.G".ru

"//C F 0.G".ru
"//G".ru

"/
�
�2 dx:(3.15)

In order to conclude, we now make the choice

F.t/ D ..t � 1/C C 1/
˛; with ˛ > 0:

We observe that

(3.16)
ˇ̌�

G".ru
"/
�
xi

ˇ̌2
�
ˇ̌�
G".ru

"/
�
xi

ˇ̌2
;

thanks to the definition of G".
It follows that

F 0.G".ru
"//
ˇ̌�
G".ru

"/
�
xi

ˇ̌2
� ˛ G".ru

"/˛�1
ˇ̌�

G".ru
"/
�
xi

ˇ̌2
D

4 ˛

.˛ C 1/2

ˇ̌�
G".ru

"/.˛C1/=2
�
xi

ˇ̌2
;

and thus

I1 D

NX
iD1

Z
g00i;".u

"
xi
/ F 0.G".ru

"//
ˇ̌�
G".ru

"/
�
xi

ˇ̌2
�2 dx

�
4 ˛

.˛ C 1/2

NX
iD1

Z
g00i;".u

"
xi
/
ˇ̌�

G".ru
"/.˛C1/=2

�
xi

ˇ̌2
�2 dx:

From (3.15) we get

(3.17)

4 ˛

.˛ C 1/2

NX
iD1

Z
g00i;".u

"
xi
/
ˇ̌�

G".ru
"/.˛C1/=2

�
xi

ˇ̌2
�2 dx C 4 I2

� C.˛ C 1/

Z
G".ru

"/
˛C2

pN �1

pN

�
jr�j2 C � jD2�j

�
dx

C C.˛ C 1/

Z
jf "j2 G".ru

"/˛ �2 dx;

for some C D C.N; p1; pN / > 0.



P. Bousquet, L. Brasco and C. Leone 776

We are only left with estimating I2 from below: recall that we have

I2 D

NX
i;kD1

Z
g00i;".u

"
xi
/ ju"xk xi j

2 F.G".ru
"// g00k;".u

"
xk
/�2 dx

D

NX
i;kD1

Z
g00i;".u

"
xi
/ ju"xk xi j

2 G".ru
"/˛ g00k;".u

"
xk
/�2 dx:

We now observe that by (3.16) and through some lengthy though elementary computa-
tions, we getˇ̌�

G".ru
"/1=2

�
xi

ˇ̌2
D

1

4G".ru"/

ˇ̌�
G".ru

"
�
xi

ˇ̌2
�

1

4G".ru"/

ˇ̌�
G".ru

"
�
xi

ˇ̌2
D

1

4G".ru"/

ˇ̌̌� NX
kD1

gk;".u
"
xk
/
�
xi

ˇ̌̌2
D

1

4G".ru"/

ˇ̌̌ NX
kD1

g0k;".u
"
xk
/ u"xk xi

ˇ̌̌2
�

N

4G".ru"/

NX
kD1

jg0k;".u
"
xk
/j2 ju"xk xi j

2:

We then apply (2.4) or (2.7) on the last term, so to get

ˇ̌�
G".ru

"/1=2
�
xi

ˇ̌2
�

N

4G".ru"/

NX
kD1

ık g
00
k;".u

"
xk
/ gk;".u

"
xk
/ ju"xk xi j

2;

where ık is the same quantity defined in (3.11). We further observe that

gk;".u
"
xk
/

G".ru"/
�
G".ru

"/

G".ru"/
� 1:

This discussion leads us to

4

N

1

ı

ˇ̌�
G".ru

"/1=2
�
xi

ˇ̌2
�

NX
kD1

g00k;".u
"
xk
/ ju"xk xi j

2:

By inserting this inequality in I2, we get

I2 �
4

N

1

ı

NX
iD1

Z
g00i;".u

"
xi
/G".ru

"/˛
ˇ̌�

G".ru
"/1=2

�
xi

ˇ̌2
�2 dx

D
4

.˛ C 1/2
1

N ı

NX
iD1

Z
g00i;".u

"
xi
/
ˇ̌�

G".ru
"/.˛C1/=2

�
xi

ˇ̌2
�2 dx:

Finally, we can use this estimate in (3.17), so as to get the desired conclusion for ˛ > 0.
The limit case ˛ D 0 can now be simply obtained by taking the limit ˛ goes to 0 in the
previously obtained estimate, since the relevant constant remains bounded.
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Proposition 3.2 (Slow Moser’s iteration). Let 1 < p1 � p2 � � � � � pN <1. For every
# � 2=p0N and every non-negative function � 2 C 20 .B/, we have

(3.18)

Z
G".ru

"/#C2=pN �2 dx

�
C #

#

Z
�2 dx C Cku"k2L1.B/ #

2

Z
G".ru

"/#
�
jr�j2 C � jD2�j

�
dx

C C # ## ku"k
#C2=pN
L1.B/

Z
jf "j#C2=pN �2 dx;

for some C D C.N; p1; pN / > 0.

Proof. We start by taking ˇ � 1 and writingZ
G".ru

"/ˇC1�2 dx D

Z
G".ru

"/ˇ
�
.G".ru

"/ � 1/C C 1
�
�2 dx

�

Z
G".ru

"/ˇ �2 dx C

Z
G".ru

"/ˇ
NX
kD1

gk;".u
"
xk
/�2 dx:

We observe that if we set

�k D max¹1; 2.pk�2/=2º and x� D max
kD1;:::;N

�k D max¹1; 2.pN�2/=2º;

using (2.3) or (2.6) on the second integral, we getZ
G".ru

"/ˇC1�2 dx �

Z
G".ru

"/ˇ �2 dx C

Z
G".ru

"/ˇ
NX
kD1

�k
"pk=2

pk
�2 dx

C

Z
G".ru

"/ˇ
NX
kD1

�k
g0
k;"
.u"xk /

pk
u"xk �

2 dx:

By recalling that g0
k;"
.t/ t � 0 and using that 0 < " � 1, we getZ

G".ru
"/ˇC1�2 dx �

Z
G".ru

"/ˇ �2 dx C x�
N

p1

Z
G".ru

"/ˇ �2 dx

C
x�

p1

Z
G".ru

"/ˇ
NX
kD1

g0k;".u
"
xk
/ u"xk �

2 dx:

In the last term, using the product rule and equation (2.14), we obtainZ
G".ru

"/ˇC1�2 dx

�

�
1C x�

N

p1

� Z
G".ru

"/ˇ �2 dx �
x�

p1

NX
kD1

Z �
G".ru

"/ˇ
�
xk
g0k;".u

"
xk
/ u"�2 dx

�
2x�

p1

NX
kD1

Z
G".ru

"/ˇg0k;".u
"
xk
/ u"��xk dxC

x�

p1

Z
G".ru

"/ˇf ".�"/0.u"/u"�2 dx:
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By using that u" is bounded and that 0 � .�"/0 � 1, we get

(3.19)

Z
G".ru

"/ˇC1�2 dx �
�
1C x�

N

p1

� Z
G".ru

"/ˇ �2 dx

C
x� ku"kL1.B/

p1

NX
kD1

Z ˇ̌�
G".ru

"/ˇ
�
xk

ˇ̌
jg0k;".u

"
xk
/j�2 dx

C
2x� ku"kL1.B/

p1

NX
kD1

Z
G".ru

"/ˇ jg0k;".u
"
xk
/j� j�xk j dx

C
x� ku"kL1.B/

p1

Z
G".ru

"/ˇ jf "j�2 dx:

Now, (2.10) together with the fact that G" � G" and G" � 1 entail

2x� ku"kL1.B/

p1

NX
kD1

Z
G".ru

"/ˇ jg0k;".u
"
xk
/j � j�xk j dx

�
2x� ku"kL1.B/

p1
Np

.pN�1/=pN
N

Z
G".ru

"/ˇC1�1=pN � jr�j dx

� �

Z
G".ru

"/ˇC1�2 dx

C
1

�

�
Np

.pN�1/=pN
N

�2 �x� ku"kL1.B/
p1

�2 Z
G".ru

"/ˇC1�2=pN jr�j2 dx;

where in the last inequality we applied Young’s inequality.
By choosing � D 1=2, we can absorb the term containing G".ru

"/ˇC1, and we get
from (3.19) the following:

1

2

Z
G".ru

"/ˇC1�2 dx

�

�
1C
x� N

p1

� Z
G".ru

"/ˇ �2 dx(3.20)

C
x� ku"kL1.B/

p1

NX
kD1

Z ˇ̌�
G".ru

"/ˇ
�
xk

ˇ̌
jg0k;".u

"
xk
/j�2 dx

C 2
�
Np

.pN�1/=pN
N

�2 �
x�
ku"kL1.B/

p1

�2 Z
G".ru

"/ˇC1�2=pN jr�j2 dx

C
x� ku"kL1.B/

p1

Z
G".ru

"/ˇ jf "j�2 dx:
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For the second term on the right-hand side, we use Young’s inequality: for every � > 0,

x� ku"kL1.B/

p1

NX
kD1

Z ˇ̌�
G".ru

"/ˇ
�
xk

ˇ̌
jg0k;".u

"
xk
/j�2 dx

D
x� ku"kL1.B/

p1

NX
kD1

ˇ

Z
G".ru

"/ˇ�1
ˇ̌�

G".ru
"/
�
xk

ˇ̌
jg0k;".u

"
xk
/j�2 dx

�

�
x� ku"kL1.B/

p1

�2 ˇ2
2�

NX
kD1

Z
G".ru

"/ˇ�2
ˇ̌�

G".ru
"/
�
xk

ˇ̌2
g00k;".u

"
xk
/�2 dx

C
�

2

NX
kD1

Z
G".ru

"/ˇ
.g0
k;"
.u"xk //

2

g00
k;"
.u"xk /

�2 dx

D
2

�

�
x� ku"kL1.B/

p1

�2 NX
kD1

Z ˇ̌�
G".ru

"/ˇ=2
�
xk

ˇ̌2
g00k;".u

"
xk
/�2 dx

C
�

2

NX
kD1

Z
G".ru

"/ˇ
.g0
k;"
.u"xk //

2

g00
k;"
.u"xk /

�2 dx:

We also notice that by (3.12) we have

NX
kD1

.g0
k;"
.u"xk //

2

g00
k;"
.u"xk /

� ı G".ru
"/:

Thus from (3.20), we get

1

2

Z
G".ru

"/ˇC1�2 dx �
�
1C
x� N

p1

� Z
G".ru

"/ˇ �2 dx

C
2

�

�
x� ku"kL1.B/

p1

�2 NX
kD1

Z ˇ̌�
G".ru

"/ˇ=2
�
xk

ˇ̌2
g00k;".u

"
xk
/�2 dx

C
� ı

2

Z
G".ru

"/ˇC1�2 dx

C 2
�
Np

.pN�1/=pN
N

�2 �x� ku"kL1.B/
p1

�2 Z
G".ru

"/ˇC1�2=pN jr�j2 dx

C
x� ku"kL1.B/

p1

Z
G".ru

"/ˇ jf "j�2 dx:



P. Bousquet, L. Brasco and C. Leone 780

By choosing � D 1=.2ı/, we can absorb again the term containing G".ru
"/ˇC1 on the

right-hand side and obtain

1

4

Z
G".ru

"/ˇC1�2 dx �
�
1C
x� N

p1

� Z
G".ru

"/ˇ �2 dx

C 4 ı
�
x� ku"kL1.B/

p1

�2 NX
kD1

Z ˇ̌�
G".ru

"/ˇ=2
�
xk

ˇ̌2
g00k;".u

"
xk
/�2 dx

C 2
�
Np

.pN�1/=pN
N

�2 �x� ku"kL1.B/
p1

�2 Z
G".ru

"/ˇC1�2=pN jr�j2 dx

C
x� ku"kL1.B/

p1

Z
G".ru

"/ˇ jf "j�2 dx:

On the right-hand side, we now use the Caccioppoli inequality (3.2) with ˛ D ˇ � 1 � 0,
so to get

NX
kD1

Z
g00k;".u

"
xk
/
ˇ̌�

G".ru
"/ˇ=2

�
xk

ˇ̌2
�2dx

� Cˇ2
Z

G".ru
"/ˇC1�2=pN

�
jr�j2 C � jD2�j

�
dx C Cˇ2

Z
jf "j2 G".ru

"/ˇ�1�2 dx;

for some C D C.N; p1; pN / > 0. This finally givesZ
G".ru

"/ˇC1�2 dx

� C

Z
G".ru

"/ˇ �2 dxCCku"k2L1.B/ ˇ
2

Z
G".ru

"/ˇC1�2=pN
�
jr�j2 C � jD2�j

�
dx

CCku"k2L1.B/ ˇ
2

Z
jf "j2 G".ru

"/ˇ�1�2dxCCku"kL1.B/

Z
G".ru

"/ˇ jf "j�2dx;

for some C D C.N; p1; pN / > 0. On the first term on the right-hand side, we can use
Young’s inequality:

C

Z
G".ru

"/ˇ �2 dx �
� ˇ

ˇ C 1

Z
G".ru

"/ˇC1�2 dx C
C ˇC1

�ˇ .ˇ C 1/

Z
�2 dx:

By choosing � D 1=2, we can re-absorb the term G".ru
"/ˇC1. This gives

1

2

Z
G".ru

"/ˇC1�2 dx

�
2ˇC ˇC1

ˇ C 1

Z
�2 dx C Cku"k2L1.B/ ˇ

2

Z
G".ru

"/ˇC1�2=pN
�
jr�j2 C � jD2�j

�
dx

C Cku"k2L1.B/ ˇ
2

Z
jf "j2 G".ru

"/ˇ�1�2 dxCCku"kL1.B/

Z
G".ru

"/ˇ jf "j�2 dx:

We proceed in a similar way for the two terms containing f ". By using Young’s inequality
with exponents

ˇ C 1

ˇ � 1
;
ˇ C 1

2
and

ˇ C 1

ˇ
; ˇ C 1;
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respectively, we get

Cku"k2L1.B/ ˇ
2

Z
jf "j2 G".ru

"/ˇ�1�2 dx C Cku"kL1.B/

Z
G".ru

"/ˇ jf "j�2 dx

� �
ˇ � 1

ˇ C 1

Z
G".ru

"/ˇC1�2 dx C
2�

1�ˇ
2 C

ˇC1
2

ˇ C 1
ku"k

ˇC1

L1.B/
ˇˇC1

Z
jf "jˇC1�2 dx

C �
ˇ

ˇ C 1

Z
G".ru

"/ˇC1�2 dx C
C ˇC1

�ˇ .ˇ C 1/
ku"k

ˇC1

L1.B/

Z
jf "jˇC1�2 dx:

By choosing � D 1=8, we can absorb again the terms containing the power ˇ C 1 of
G".ru

"/. This finally leads to the estimate (3.18), up to renaming # D ˇ C 1 � 2=pN .
This concludes the proof.

4. Uniform higher integrability

In this section, we establish a higher integrability estimate for ru", which will eventu-
ally lead to the result of Proposition 1.1. Throughout this section, we shall assume that
1 < p1 � � � � � pN , without any further restriction. Up to some technical facts, the proof
of the next result is simply based on iterating the estimate of Proposition 3.2, starting from

#0 D
2

p0N
�

However, some care is required in order to get an a priori estimate only depending on
the L1 norm of G": observe indeed that #0 > 1 in the case pN > 2. For this purpose, we
further need an interpolation trick.

Proposition 4.1. Let 1 < p1 � p2 � � � � � pN <1. Then for every pair of concentric
balls Br b BR b B and every  � 2, we haveZ

Br

G".ru
"/ dx � �1 C �2

Z
BR

G".ru
"/ dx;

for two constants �1; �2 > 0 depending on

N; pN ; p1; ; R; R � r; kf
"
kL .BR/ and ku"kL1.B/:

Proof. We take  � 2 and define the sequence of exponents

#0 D
2

p0N
; #iC1 D #i C

2

pN
D

2

p0N
C .i C 1/

2

pN
D 2C i

2

pN
; for i 2 N:

We set

(4.1) i0 D max
®
i 2 N W i � pN

2
. � 2/

¯
:

This in particular implies that

#i0C1 �  < #i0C2:
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We now need to distinguish various cases, according to the values of pN and  , allowing
to iteratively refine estimate (3.18).

Case A.1. Here we assume that

(4.2) pN � 2 and
pN

2
. � 2/ 2 N:

This is the simplest case: we get the estimate by iterating Proposition 3.2 with exponents
# D #i and a suitable sequence of shrinking balls.

More precisely, we fix Br and BR as in the statement, and define the sequence of
decreasing radii

ri D R � i
R � r

i0 C 1
; for i D 0; : : : ; i0 C 1:

Accordingly, we take a cut-off function �i 2 C 20 .Bri / for i D 0; : : : ; i0, such that

0 � �i � 1; �i � 1 on BriC1 ; jr�i j
2
C jD2�i j �

C.i0 C 1/
2

.R � r/2
�

By applying (3.18) with # D #i , � D �i , and using the properties of the cut-off function,
we getZ

BriC1

G".ru
"/#iC1 dx �

C #i

#i
jBRj C

C#2i .i0 C 1/
2

.R � r/2
ku"k2L1.B/

Z
Bri

G".ru
"/#i dx

C C #i #
#i
i ku

"
k
#iC1
L1.B/

Z
Bri

jf "j#iC1 dx;

for a constant C D C.N; p1; pN / > 0. By using Hölder’s inequality on the right-hand
side, we also getZ

BriC1

G".ru
"/#iC1 dx �

C #i

#i
jBRj C

C#2i .i0 C 1/
2

.R � r/2
ku"k2L1.B/

Z
Bri

G".ru
"/#i dx

C C #i #
#i
i jBRj

1�#iC1= ku"k
#iC1
L1.B/

� Z
BR

jf "j dx
�#iC1=

:(4.3)

Starting from i D 0 and iterating (4.3) from 0 to i0, we get

(4.4)
Z
Br

G".ru
"/#i0C1 dx �M CD0

Z
BR

G".ru
"/2=p

0
N dx;

where we set, for notational simplicity, and for every natural number 0 � k � i0,

Dk D
h i0Y
iDk

C#2i .i0 C 1/
2

.R � r/2
ku"k2L1.B/

i
D

hC.i0 C 1/2
.R � r/2

ku"k2L1.B/

ii0�kC1 i0Y
iDk

#2i ;

while

M D

i0X
iD0

�C #i
#i
jBRj C C

#i #
#i
i jBRj

1�#iC1=
�
ku"kL1.B/ kf kL .BR/

�#iC1 �
DiC1;
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with the notational agreement thatDi0C1 D 1. Their precise expression is not very import-
ant, but we point out that D0 and M depend only on

N;pN ; p1; ; R;R � r; kf"kL .BR/ and ku"kL1.B/:

Thanks to the assumption (4.2) and recalling that G" � 1, we get

#i0C1 D  and
Z
BR

G".ru
"/2=p

0
N dx �

Z
BR

G".ru
"/ dx;

thus the desired conclusion follows from (4.4).
Case A.2. Here we assume that

pN � 2 and
pN

2
. � 2/ 62 N:

In light of the second assumption, we have

#i0C1 <  < #i0C2;

where i0 is the index defined in (4.1). Thus in this case, we need an extra step of the
iteration, by suitably adapting the choice of the exponent # . We take Br b B% b BR,
where

% D
RC r

2
;

and define the sequence of decreasing radii

ri D R � i
R � %

i0 C 1
; for i D 0; : : : ; i0 C 1:

We take a cut-off function �i 2 C 20 .Bri / for i D 0; : : : ; i0, such that

0 � �i � 1; �i � 1 on BriC1 ; jr�i j
2
C jD2�i j �

C.i0 C 1/
2

.R � �/2
�

By proceeding as above, we now get

(4.5)
Z
B%

G".ru
"/#i0C1 dx �M CD0

Z
BR

G".ru
"/2=p

0
N dx:

The last term can be estimated from above, by using again that 2=p0N � 1. However, in
order to reach the desired exponent > �i0C1, we need to apply (3.18) once more. We take
a cut-off function � 2 C 20 .B%/ such that

0 � � � 1; � � 1 on Br ; jr�j2 C jD2�j �
C

.% � r/2
�

By applying (3.18) with3

# D  �
2

pN
;

3Observe that such a choice is feasible, since  � 2=pN � 2=p0N if and only if  � 2.
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and the cut-off function above, we getZ
Br

G".ru
"/ dx � C jBRj C Cku

"
k
2
L1.B/

Z
B%

G".ru
"/�2=pN dx

C Cku"k


L1.B/

Z
BR

jf "j dx:

On the right-hand side, the term containing G".ru
"/ is under control, since by con-

struction,

 �
2

pN
< #i0C2 �

2

pN
D #i0C1:

Thus we have Z
B%

G".ru
"/�2=pN dx �

Z
B%

G".ru
"/#i0C1 dx;

and the last term can be estimated by (4.5).
Case B. Here we assume that pN > 2. The proof goes exactly as before, so, for every

r < R with BR b B , we certainly haveZ
Br

G".ru
"/ dx � �1 C �2

Z
B.RCr/=2

G".ru
"/2=p

0
N dx;

but now the major difference is that we need to estimate the integral on the right-hand side.
Indeed, in this case 2=p0N > 1 and we cannot directly assure that this term is bounded,
uniformly in ". We need to use an interpolation trick to get a reverse L2=p

0
N -L1 estimate

on G".ru
"/. We denote

% D
RC r

2
;

and we observe that
1 <

2

p0N
< 2;

thus by interpolation in Lebesgue spaces, we get for every % � s < t � R,

(4.6)
Z
Bs

G".ru
"/2=p

0
N dx �

� Z
Bs

G".ru
"/ dx

�2=pN � Z
Bs

G".ru
"/2 dx

�.pN�2/=pN
:

TheL2 norm on the right-hand side can in turn be estimated by means of (3.18), observing
that

2 D
2

p0N
C

2

pN
�

By taking # D 2=p0N and a cut-off function � 2 C 20 .Bt / such that

0 � � � 1; � � 1 on Bs; jr�j2 C jD2�j �
C

.t � s/2
;
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we thus get, from (3.18),Z
Bs

G".ru
"/2 dx � C jBRj C

C

.t � s/2
ku"k2L1.B/

Z
Bt

G".ru
"/2=p

0
N dx

C Cku"k2L1.B/

Z
BR

jf "j2 dx

� C jBRj C
C

.t � s/2
ku"k2L1.B/

Z
Bt

G".ru
"/2=p

0
N dx

C C jBRj
1�2=

ku"k2L1.B/

� Z
BR

jf "j dx
�2=

;

for C D C.N; p1; pN / > 0. We insert the above inequality into (4.6) and use the subad-
ditivity of � 7! � .pN�2/=pN to getZ
Bs

G".ru
"/2=p

0
N dx �

� Z
Bs

G".ru
"/ dx

�2=pN
.C jBRj/

.pN�2/=pN

C

� Z
Bs

G".ru
"/ dx

�2=pN � C

.t � s/2
ku"k2L1.B/

� pN �2
pN

� Z
Bt

G".ru
"/2=p

0
N dx

� pN �2
pN

C

� Z
Bs

G".ru
"/ dx

�2=pN �
C jBRj

1�2=
�
ku"kL1.B/ kf

"
kL .BR/

�2 � pN �2pN :

For the second term on the right-hand side, we apply Young’s inequality with conjugate
exponents pN =2 and pN =.pN � 2/. We getZ
Bs

G".ru
"/2=p

0
N dx �

� Z
BR

G".ru
"/ dx

�2=pN
.C jBRj/

.pN�2/=pN

C
2

pN

Z
BR

G".ru
"/ dx

� C

.t � s/2
ku"k2L1.B/

�.pN�2/=2
C
pN �2

pN

Z
Bt

G".ru
"/2=p

0
N dx

C

� Z
BR

G".ru
"/ dx

�2=pN �
C jBRj

1�2= .ku"kL1.B/ kf
"
kL .BR//

2
�.pN�2/=pN :

We now use Lemma 2.7 with the choices

Z.s/ D

Z
Bs

G".ru
"/2=p

0
N dx; # D

pN �2

pN
;

A D
2

pN

Z
BR

G".ru
"/ dx

�
Cku"k2L1.B/

�.pN�2/=2; ˛0 D pN � 2; B D 0;

and

C D
� Z

BR

G".ru
"/ dx

�2=pN
�
�
.C jBRj/

.pN�2/=pN C
�
C jBRj

1�2= .ku"kL1.B/ kf
"
kL .BR//

2
�.pN�2/=pN �;
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in order to absorb the penultimate integral. This permits to conclude thatZ
B%

G".ru
"/2=p

0
N dx � zC

� Z
BR

G".ru
"/ dx

�2=pN
.C jBRj/

.pN�2/=pN

C zC
2

pN

1

.R � r/pN�2

Z
BR

G".ru
"/ dx

�
Cku"k2L1.B/

�.pN�2/=2
C zC

� Z
BR

G".ru
"/ dx

�2=pN �
jBRj

1�2= .ku"kL1.B/ kf
"
kL .BR//

2
�.pN�2/=pN :

This gives the claimedL2=p
0
N -L1 estimate on G".ru

"/. The desired conclusion now easily
follows. We leave the details to the reader.

Remark 4.2 (Quality of the constants). For future references, it is important to notice that
the two constants �1 and �2 in the previous statement are uniformly bounded from above,
whenever there exists a constant C � 1 such that

kf "kL .BR/ C ku
"
kL1.B/ � C; for every 0 < " � "0;

and
R � r �

1

C
�

On the contrary, we see from the proof above that

lim
!1

�i D C1; for i D 1; 2:

5. Uniform Lipschitz bound

We now establish a local L1 estimate for ru": this time, this will lead to Theorem L.

Proposition 5.1. Let 1 < p1 � � � � � pN � 2 and 0 < " � "0. Then for every pair of
concentric balls Br b BR b B , R < 1, and every q > N , we have

kG".ru
"/kL1.Br /

�C
h 1

.R�r/Nq=.q�N/

� Z
BR

G".ru
"/q dx

�N=.q�N/
C kf "k

Nq=.q�N/

Lq.BR/

i
kG".ru

"/kL1.BR/;

for some C D C.N; pN ; p1; q/ > 0.

Proof. We will use a Moser’s iteration scheme, in order to get the claimed estimate.
By (2.2), for every i D 1; : : : ; N , we have

g00i;".u
"
xi
/ � .pi � 1/ ."C ju

"
xi
j
2/.pi�2/=2 D .pi � 1/

�
pi gi;".u

"
xi
/
�.pi�2/=pi

� .pi � 1/
�
pi G".ru

"/
�.pi�2/=pi

� .pi � 1/
�
pi G".ru

"/
�.pi�2/=pi

;

thanks to the fact that pi � 2, for every i D 1; : : : ; N . We can further estimate the last
term from below as follows:

g00i;".u
"
xi
/ � .p1 � 1/ .pN /

.p1�2/=p1 G".ru
"/.p1�2/=p1 :
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By using this lower bound in (3.2), we get

NX
iD1

Z
G".ru

"/.p1�2/=p1
ˇ̌�

G".ru
"/.˛C1/=2

�
xi

ˇ̌2
�2 dx

� C.˛ C 1/2
Z

G".ru
"/˛C2�2=pN

�
jr�j2 C � jD2�j

�
dx(5.1)

C C.˛ C 1/2
Z
jf "j2 G".ru

"/˛ �2 dx;

for some C D C.N; p1; pN / > 0. With simple algebraic manipulations, for every ˛ � 0
we have

G".ru
"/.p1�2/=p1

ˇ̌�
G".ru

"/.˛C1/=2
�
xi

ˇ̌2
D

�˛ C 1
2

�2 1�
˛C2
2
�

1
p1

�2 ˇ̌�G".ru"/.˛C2/=2�1=p1�xi ˇ̌2 � ˇ̌�G".ru"/.˛C2/=2�1=p1�xi ˇ̌2:
Thus from (5.1) we obtainZ ˇ̌

r
�
G".ru

"/.˛C2/=2�1=p1
�ˇ̌2
�2 dx

� C.˛ C 1/2
Z

G".ru
"/˛C2�2=pN

�
jr�j2 C � jD2�j

�
dx(5.2)

C C.˛ C 1/2
Z
jf "j2 G".ru

"/˛ �2 dx;

for some C D C.N; p1; pN / > 0. By adding on both sides the termZ �
G".ru

"/.˛C2/=2�1=p1
�2
jr�j2 dx;

and using again that G" � 1, we then obtain from (5.2),Z ˇ̌
r
��

G".ru
"/.˛C2/=2�1=p1

�
�
�ˇ̌2
dx

� C.˛ C 1/2
Z

G".ru
"/˛C2�2=pN

�
jr�j2 C � jD2�j

�
dx(5.3)

C C.˛ C 1/2
Z
jf "j2 G".ru

"/˛ �2 dx;

possibly for a different constant C D C.N; p1; pN / > 0. Let us suppose for simplicity
that N � 3. The case N D 2 can be treated with minor modifications. On the left-hand
side of (5.3), we then use Sobolev’s inequality in W 1;2.RN /. This gives� Z �

G".ru
"/.˛C2/=2�1=p1 �

�2�
dx
�2=2�

� C.˛ C 1/2
Z

G".ru
"/˛C2�2=pN

�
jr�j2 C � jD2�j

�
dx(5.4)

C C.˛ C 1/2
Z
jf "j2 G".ru

"/˛ �2 dx;
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with some new constant C D C.N; p1; pN / > 0. We choose � 2 C 20 .BR/ to be a cut-off
function such that

0 � � � 1; � � 1 on Br ; jr�j2 C jD2�j �
C

.R � r/2
�

Thus we obtain, from (5.4),� Z
Br

�
G".ru

"/.˛C2/=2�1=p1
�2�

dx
�2=2�

� C
.˛ C 1/2

.R � r/2

Z
BR

G".ru
"/˛C2�2=pN dx

C C.˛ C 1/2
Z
BR

jf "j2 G".ru
"/˛ dx:

We now take an exponent q > N . By Hölder’s inequality on the last term, we deduce that� Z
Br

�
G".ru

"/.˛C2/=2�1=p1
�2�

dx
�2=2�

� C
.˛ C 1/2

.R � r/2

Z
BR

G".ru
"/˛C2�2=pN dx(5.5)

C C.˛ C 1/2 kf "k2Lq.BR/

� Z
BR

G".ru
"/
˛

q
q�2 dx

�.q�2/=q
:

Before proceeding further, we rely on Hölder’s inequality to getZ
BR

G".ru
"/˛C2�2=pN dx �

�Z
BR

G".ru
"/
˛

q
q�2 dx

�.q�2/=q �Z
BR

G".ru
"/q=p

0
N dx

�2=q
:

Moreover, by recalling that G" � 1, we have

G".ru
"/˛q=.q�2/ �

�
G".ru

"/˛C2�2=p1
�q=.q�2/

:

By using these two facts in (5.5), we obtain� Z
Br

G".ru
"/.˛C2�2=p1/

2�

2 dx
�2=2�

� C.˛ C 1/2
h 1

.R � r/2

� Z
BR

G".ru
"/q=p

0
N dx

�2=q
C kf "k2Lq.BR/

i
(5.6)

�

� Z
BR

G".ru
"/
.˛C2�2=p1/

q
q�2 dx

�.q�2/=q
:

We now set
� D ˛ C 2 �

2

p1
;

so that from (5.6), we get� Z
Br

G".ru
"/

2�

2 � dx
�2=.2��/

� .C�2/1=�
h 1

.R � r/2

� Z
BR

G".ru
"/q=p

0
N dx

�2=q
C kf "k2Lq.BR/

i1=�
(5.7)

�

� Z
BR

G".ru
"/
�

q
q�2 dx

�.q�2/=.q�/
:



Singular orthotropic functionals with nonstandard growth conditions 789

We define the sequence of exponents through the following recursive relation:

�0 D 1; �iC1
q

q � 2
D
2�

2
�i ; for i 2 NI

that is,4

�iC1 D
�2�
2

q � 2

q

�
�i D

�2�
2

q � 2

q

�iC1
; for i 2 N:

We also define the classical sequence of shrinking radii

ri D r C
R � r

2i
; for i 2 N:

With this notation, from (5.7) we get

kG".ru
"/k

L
q
q�2 �iC1 .BriC1 /

�

h C

.R � r/2

� Z
BR

G".ru
"/q=p

0
N dx

�2=q
C Ckf "k2Lq.BR/

i1=�i
(5.8)

� .4i �2i /
1=�i kG".ru

"/k
L

q
q�2 �i .Bri /

:

By starting from i D 0 and iterating (5.8) n times, we get

kG".ru
"/k

L
q
q�2 �nC1 .BrnC1 /

�

h C

.R � r/2

� Z
BR

G".ru
"/q=p

0
N dx

�2=q
C Ckf "k2Lq.BR/

iPn
iD0

1
�i(5.9)

�

nY
iD0

.4i �2i /
1=�i kG".ru

"/k
L

q
q�2 .BR/

:

By observing that

lim
n!1

nY
iD0

.4i �2i /
1=�i DW CN;q < C1;

and

lim
n!1

nX
iD0

1

�i
D

1X
iD0

� 2 q

2� .q � 2/

�i
D
N

2

q � 2

q �N
;

if we take the limit as n goes to1 in (5.9), we end up with

kG".ru
"/kL1.Br / � C

h 1

.R � r/2

� Z
BR

G".ru
"/q=p

0
N dx

�2=q
C kf "k2Lq.BR/

iN
2

q�2
q�N

� kG".ru
"/kLq=.q�2/.BR/ ;

4Observe that
2 q

2� .q � 2/
< 1 ” q > N;

and the latter holds true, in view of our assumption.
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for some C D C.N; p1; pN ; q/ > 0. The previous estimate holds for every r < R such
that BR b B . Thus, we can now use a standard interpolation trick to rectify it and replace
the Lq=.q�2/ norm on the right-hand side by the L1 norm.

This goes as follows: we first observe that

kG".ru
"/kLq=.q�2/.BR/ �

�
kG".ru

"/kL1.BR/
�2=q �

kG".ru
"/kL1.BR/

�.q�2/=q
:

Then by using Young’s inequality with exponents q=2 and q=.q � 2/, we get

kG".ru
"/kL1.Br /

�
q � 2

q
C q=.q�2/

h 1

.R � r/2

� Z
BR

G".ru
"/q=p

0
N dx

�2=q
C kf "k2Lq.BR/

iN
2

q
q�N

� kG".ru
"/kL1.BR/ C

2

q
kG".ru

"/kL1.BR/ :

We now take s; t such that r � s < t � R. The previous estimate is valid by replacing r
with s and R with t . Thus, with some simple algebraic manipulations, we get

kG".ru
"/kL1.Bs/

�
q � 2

q

C
q
q�2

2
q.N�2/C2N
2.N�q/

"
1

.t � s/
N q
q�N

� Z
BR

G".ru
"/q=p

0
N dx

� N
q�N
C kf "k

N q
q�N

Lq.BR/

#
� kG".ru

"/kL1.BR/ C
2

q
kG".ru

"/kL1.Bt / :

By relying once again on Lemma 2.7, from the last estimate we get

kG".ru
"/kL1.Br /

� zC

�
1

.R � r/
N q
q�N

� Z
BR

G".ru
"/q=p

0
N dx

� N
q�N
C kf "k

N q
q�N

Lq.BR/

�
kG".ru

"/kL1.BR/ :

By finally using that
G".ru

"/q=p
0
N � G".ru

"/q;

we eventually conclude the proof.

6. Uniform higher differentiability

At last, we prove a Sobolev-type regularity result for (some nonlinear function of) ru",
which eventually will permit to establish Theorem S.

Proposition 6.1. Let 1 < p1 � � � � � pN � 2. For 0 < " � "0 and i D 1; : : : ; N , we set

(6.1) Vi;" D Vi;".u
"
xi
/; with Vi;".t/ D

Z t

0

q
g00i;".�/ d�:
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Then for every non-negative � 2 C 20 .B/ and every  � 2, we have5

NX
iD1

Z
jrVi;"j

2 �2 dx � C

Z
G".ru

"/1C2 .1=p1�1=pN /
�
jr�j2 C � jD2�j

�
dx

C C
� Z

G".ru
"/

2�p1
p1


�2 �2 dx

�.�2/= � Z
jf "j �2 dx

�2=
;(6.2)

for some C D C.N; pN ; p1/ > 0.

Proof. We start by fixing k 2 ¹1; : : : ;N º and inserting in the differentiated equation (2.15)
the test function ' D u"xk �

2. Thus we get

NX
iD1

Z
g00i;".u

"
xi
/ ju"xk xi j

2 �2 dx D �2

NX
iD1

Z
g00i;".u

"
xi
/ u"xk xi u

"
xk
� �xi dx

C

Z
.f ".�"/0.u"//xk u

"
xk
�2 dx:

For the first term of the right-hand side, we use the same trick as in the proof of Proposi-
tion 3.1: we observe that

g00i;".u
"
xi
/ u"xk xi D

�
g0i;".u

"
xi
/
�
xk
;

and then integrate by parts. We integrate by parts the term .f " .�"/0 .u"//xk , as well. This
yields

NX
iD1

Z
g00i;".u

"
xi
/ ju"xk xi j

2 �2 dx

D 2

NX
iD1

Z
g0i;".u

"
xi
/ .u"xk � �xi /xk dx �

Z
f ".�"/0.u"/ .u"xk �

2/xk dx

D

Z
u"xk xk

�
2

NX
iD1

g0i;".u
"
xi
/ � �xi � f

".�"/0.u"/�2
�
dx(6.3)

C 2

Z
u"xk

� NX
iD1

g0i;".u
"
xi
/ .�xk �xi C � �xi xk / � � �xk f

".�"/0.u"/
�
dx:

By Young’s inequality and the fact that 0 � .�"/0 � 1, we can estimate the first term of the
right-hand side as follows:Z
u"xk xk

�
2

NX
iD1

g0i;".u
"
xi
/ � �xi � f

".�"/0.u"/�2
�
dx

�
1

2

Z
g00k;".u

"
xk
/ju"xk xk j

2�2dxC4

Z
1

g00
k;"
.u"xk /

�� NX
iD1

jg0i;".u
"
xi
/j
�2
jr�j2Cjf "j2�2

�
dx:

5When  D 2, the last term is simply CkG" �2k
.2�p1/=p1
L1

kf "�k2
L2
:



P. Bousquet, L. Brasco and C. Leone 792

We use (2.2) to estimate 1=g00
k;"

on the right-hand side. On account of this inequality,
we getZ

u"xk xk

�
2

NX
iD1

g0i;".u
"
xi
/ � �xi � f

".�"/0.u"/�2
�
dx �

1

2

Z
g00k;".u

"
xk
/ ju"xk xk j

2 �2 dx

C
4

pk � 1

Z �
"C .u"xk /

2
�.2�pk/=2 �� NX

iD1

jg0i;".u
"
xi
/j
�2
jr�j2 C jf "j2�2

�
dx:

Inserting the above inequality into (6.3) and absorbing the Hessian term of the right-hand
side into the left-hand side, one gets

NX
iD1

Z
g00i;".u

"
xi
/ ju"xk xi j

2 �2 dx

�
8

pk � 1

Z �
"C .u"xk /

2
�.2�pk/=2 �� NX

iD1

jg0i;".u
"
xi
/j
�2
jr�j2 C jf "j2�2

�
dx(6.4)

C 4

Z
u"xk

� NX
iD1

g0i;".u
"
xi
/ .�xk �xi C � �xi xk / � � �xk f

".�"/0.u"/
�
dx:

We now estimate the last term as follows:ˇ̌̌ Z
u"xk

� NX
iD1

g0i;".u
"
xi
/ .�xk �xi C � �xi xk / � � �xk f

".�"/0.u"/
�
dx
ˇ̌̌

�

Z
ju"xk j jf

"
j � jr�j dx C

Z
ju"xk j

NX
iD1

jg0i;".u
"
xi
/j
�
jr�j2 C � jD2�j

�
dx:

Observe that we used again that 0 � .�"/0 � 1. We apply Young’s inequality on the last
term to obtainZ

ju"xk j

NX
iD1

jg0i;".u
"
xi
/j
�
jr�j2 C � jD2�j

�
dx

�
1

2

Z
ju"xk j

2�pk

� NX
iD1

jg0i;".u
"
xi
/j
�2�
jr�j2 C � jD2�j/

�
dx

C
1

2

Z
ju"xk j

pk
�
jr�j2 C � jD2�j

�
dx:

By further using that pk � 2, we have

ju"xk j
2�pk � ."C .u"xk /

2/.2�pk/=2 D p
.2�pk/=pk
k

gk;".u
"
xk
/.2�pk/=pk :



Singular orthotropic functionals with nonstandard growth conditions 793

It follows from the above inequality and (6.4) that

NX
iD1

Z
g00i;".u

"
xi
/ ju"xk xi j

2 �2 dx

� C

Z
gk;".u

"
xk
/.2�pk/=pk

�� NX
iD1

jg0i;".u
"
xi
/j
�2
jr�j2 C jf "j2�2

�
dx

C C

Z
ju"xk j

pk
�
jr�j2 C � jD2�j

�
dx C C

Z
ju"xk j jf

"
j � jr�j dx;

for some C D C.p1; pN / > 0. Then take the sum over k D 1; : : : ; N . This gives

(6.5)

NX
iD1

Z
g00i;".u

"
xi
/ jru"xi j

2 �2 dx

� C

Z NX
kD1

gk;".u
"
xk
/.2�pk/=pk

�� NX
iD1

jg0i;".u
"
xi
/j
�2
jr�j2 C jf "j2�2

�
dx

C C

Z NX
kD1

ju"xk j
pk
�
jr�j2 C � jD2�j

�
dx C C

Z NX
kD1

ju"xk j jf
"
j � jr�j dx:

By Lemma 2.3, we have

NX
iD1

jg0i;".u
"
xi
/j � p

.pN�1/=pN
N

NX
iD1

G".ru
"/.pi�1/=pi � Np

.pN�1/=pN
N G".ru

"/.pN�1/=pN :

Moreover, by the definitions of gk;"; G", and G", it is easily seen that

NX
kD1

gk;".u
"
xk
/.2�pk/=pk � C G".ru

"/.2�p1/=p1 ;

NX
kD1

ju"xk j
pk �

NX
kD1

pk gk;".u
"
xk
/ � CG".ru

"/ and
NX
kD1

ju"xk j � CG".ru
"/1=p1 ;

where all the constants depend only on N;p1 and pN . From (6.5), we get

NX
iD1

Z
g00i;".u

"
xi
/ jru"xi j

2 �2 dx

� C

Z
G".ru

"/1C2 .1=p1�1=pN / jr�j2 dx C C

Z
G".ru

"/.2�p1/=p1 jf "j2�2 dx

C C

Z
G".ru

"/
�
jr�j2 C � jD2�j

�
dx C C

Z
G".ru

"/1=p1 jf "j � jr�j dx;

for some C D C.N; p1; pN / > 0. Since

1 � 1C 2
� 1
p1
�

1

pN

�
and G".ru

"/ � 1;
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the third term can be absorbed in the first one, up to increasing C if necessary:

NX
iD1

Z
g00i;".u

"
xi
/ jru"xi j

2 �2 dx

� C

Z
G".ru

"/1C2 .1=p1�1=pN /
�
jr�j2 C � jD2�j

�
dx(6.6)

C C

Z
G".ru

"/.2�p1/=p1 jf "j2�2 dx C C

Z
G".ru

"/1=p1 jf "j � jr�j dx:

In the last term, we write

G".ru
"/1=p1 jf "j � jr�j D

�
G".ru

"/1=2jr�j
� �

G".ru
"/1=p1�1=2 jf "j �

�
;

and use Young’s inequality:Z
G".ru

"/1=p1 jf "j � jr�j dx �

Z
G".ru

"/ jr�j2 dx C

Z
G".ru

"/2=p1�1 jf "j2�2 dx

�

Z
G".ru

"/1C2 .1=p1�1=pN /
�
jr�j2 C � jD2�j

�
dx C

Z
G".ru

"/2=p1�1 jf "j2�2 dx;

where in the last line we have used again that G" � 1. Inserting this estimate in (6.6), we
obtain

NX
iD1

Z
g00i;".u

"
xi
/ jru"xi j

2 �2 dx � C

Z
G".ru

"/1C2 .1=p1�1=pN /
�
jr�j2 C � jD2�j

�
dx

C C

Z
G".ru

"/.2�p1/=p1 jf "j2 �2 dx:

On the left-hand side, we use the definition (6.1) of Vi;" which gives that

jrVi;"j
2
D g00i;".u

"
xi
/ jru"xi j

2:

This yields the desired conclusion when the exponent  in the statement of Proposition 6.1
is equal to 2. When  > 2, we only need to apply the Hölder inequality to the last term of
the right-hand side with the exponents =. � 2/ and =2. The proof is complete.

7. Proofs of the main results

We finally establish the three results presented in the introduction by relying on the rel-
evant a priori estimates that we have obtained in the previous sections. We thus fix a ball
B4R.x0/ b � as in the statements of Proposition 1.1, Theorem L and Theorem S: we are
going to use the results of the previous sections, with the choice B D B2R.x0/.

We will use the functions G0 and G", defined by (1.1) and (3.1). Moreover, we will
omit to indicate the centers of the balls, which will always be x0.
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7.1. Proof of Proposition 1.1

In this section, we assume that 1 < p1 � � � � � pN <1 and f 2 Lloc.�/ for some  � 2.
We consider the ball BR b B . Then for every 0 < " < "0,

kf "kL .BR/ � kf kL .2B/:

Using also that ku"kL1.B/ �M C 1, Proposition 4.1 and Remark 4.2 imply that for every
0 < " < "0 we have

(7.1)
Z
BR=2

G".ru
"/ dx � �1 C �2

Z
BR

G".ru
"/ dx;

for two constants �1; �2 > 0 which do not depend on ", but only on

N; pN ; p1; ; R; kf kL .2B/ and M D kU kL1.2B/:

In particular, by using that6

(7.2) G0.z/ � G".z/ � C."
p1=2 C G0.z//; for every z 2 RN ;

for some C D C.N; pN ; p1/ > 0, we can inferZ
BR=2

G0.ru
"/ dx � �1 C C�2

Z
BR

."p1=2 C G0.ru
"// dx:

In view of Lemma 2.6, there exists an infinitesimal sequence ¹"kºk2N such that

.u"k ;ru"k / converges to .U;rU/ a. e. in B:

We then take the limit on both sides of the estimate above and use Fatou’s lemma on the
left. We get

(7.3)
Z
BR=2

G0.rU/
 dx � �1 C C�2 lim inf

k!1

Z
BR

G0.ru
"k / dx:

By Lemma 2.6, the functions u"xi converge to Uxi in Lpi .B/. Hence, the continuity of the
map v 2 Lpi .B/ 7! jvjpi 2 L1.B/ implies that

(7.4) lim
"!0
kG0.ru

"/ � G0.rU/kL1.B/ D 0:

By using this result in (7.3), we obtainZ
BR=2

G0.rU/
 dx � �1 C C�2

Z
BR

G0.rU/ dx:

This concludes the proof, up to renaming the constant �2.

6The upper bound simply follows from (2.16), with standard algebraic manipulations.
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7.2. Proof of Theorem L

In this section, we assume that 1 < p1 � � � � � pN � 2 and f 2 Lloc.�/ for some  > N .
In particular,  � 2 and thus we can rely on Proposition 4.1.

We introduce the ball BR b B as before. By Proposition 5.1 applied with BR=4
and BR=2, for every " 2 .0; "0/, we have

kG".ru
"/kL1.BR=4/ � C

h� 4
R

�N=.�N/� Z
BR=2

G".ru
"/ dx

�N=.�N/
C kf "k

N=.�N/

L .BR/

i
kG".ru

"/kL1.BR/;

for some C D C.N; pN ; p1; / > 0. On the right-hand side, we can apply (7.1), in order
to estimate the term containing G


" . This yields

kG".ru
"/kL1.BR=4/ � C

h� 4
R

�N=.�N/�
�1 C �2

Z
BR

G".ru
"/ dx

�N=.�N/
C kf "k

N=.�N/

L .BR/

i
kG".ru

"/kL1.BR/:

We now take the same infinitesimal sequence ¹"kºk2N as in the proof of Proposition 1.1.
By using again (7.2), the lower semicontinuity of the L1 norm with respect to almost
everywhere convergence, the property (7.4) and the fact that f "k is defined from f by
convolution with a smooth kernel, the limit as k goes to1 gives

kG0.rU/kL1.BR=4/ � C
h� 4
R

�N=.�N/ �
�1 C �2

Z
BR

G0.rU/ dx
�N=.�N/

C kf k
N=.�N/

L .BR/

i
kG0.rU/kL1.BR/;

possibly for a different C D C.N; pN ; p1; / > 0. This completes the proof.

7.3. Proof of Theorem S

We assume that 1 < p1 � � � � � pN � 2 and f satisfies (1.3). We can suppose that p1 < 2,
otherwise the result is well known. We set, for notational simplicity,

 D 1C
2

p1
�

Consider the ball BR b B , and let � 2 C10 .BR=2/ be such that

� � 1 on BR=4; 0 � � � 1; and jr�j2 C jD2�j �
C0

R2
;

for some C0 which depends only on N . The choice of  entails the following estimates:

1C 2
� 1
p1
�

1

pN

�
<  and

2 � p1

p1



 � 2
D :
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Then, as a consequence of (6.2), we have

NX
iD1

Z
BR=4

jrVi;"j
2 dx �

C

R2

Z
BR=2

G".ru
"/ dx

C C
� Z

BR=2

G".ru
"/ dx

�.�2/=
kf "k2L .BR/;

where we also used that G" � 1, by definition. We now rely again on (7.1), to estimate
the terms containing G


" . This estimate and Young’s inequality with exponents =2 and

=. � 2/ give

(7.5)
NX
iD1

Z
BR=4

jrVi;"j
2 dx �

C

R2

�
�1 C �2

Z
BR

G".ru
"/ dx

�
C CR�2 kf "k



L .BR/
;

possibly for a different constant C D C.N; pN ; p1/ > 0. From this estimate, we deduce
that the family rVi;" is uniformly bounded in L2.BR=4/. Moreover, by (2.2) we have

(7.6)
q
g00i;".t/ � ."C t

2/.pi�2/=4 � jt j.pi�2/=2; for t 6D 0:

Thus, by recalling the definition of Vi;", we getZ
BR=4

jVi;"j
2 dx D

Z
BR=4

jVi;".u
"
xi
/j2 dx �

� 2
pi

�2 Z
BR=4

ju"xi j
pi dx;

and the latter is uniformly bounded, thanks to Lemma 2.5.
Thus, by taking the same infinitesimal sequence ¹"kºk�1 as in the proof of Propos-

ition 1.1, we have obtained that ¹Vi;"k ºk2N is a bounded sequence in W 1;2.BR=4/. By
appealing to the Rellich–Kondrašov theorem, we can infer its convergence to a func-
tion Vi 2 W

1;2.BR=4/, weakly in W 1;2.BR=4/ and strongly in L2.BR=4/ (up to a sub-
sequence). By the lower semicontinuity of the L2 norm, (7.2) and (7.4), we get from (7.5)
that

NX
iD1

Z
BR=4

jrVi j
2 dx �

C

R2

�
�1 C �2

Z
BR

G0.rU/ dx
�
C CR�2 kf k



L .BR/
;

possibly for a different C D C.N; pN ; p1/ > 0. We claim that for every 1 � i � N and
for almost every x 2 BR=4, we have

(7.7) Vi .x/ D
2

pi

p
pi � 1 jUxi .x/j

.pi�2/=2 Uxi .x/:

Indeed, take x2BR=4 such that u"kxi .x/ converges toUxi .x/, and such that jUxi .x/j<C1.
Observe that the collection of these points has full measure in BR=4. We then set

Mi .x/ D sup
k2N
ju"kxi .x/j;
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which is finite, by construction. Then, for every k � 0 we haveˇ̌̌
Vi;"k .x/ �

2

pi

p
pi � 1 jUxi .x/j

.pi�2/=2 Uxi .x/
ˇ̌̌

D

ˇ̌̌
Vi;"k .u

"k
xi
.x// �

2

pi

p
pi � 1 jUxi .x/j

.pi�2/=2 Uxi .x/
ˇ̌̌

�

ˇ̌̌ Z u
"k
xi
.x/

0

�q
g00i;"k .�/ �

p
.pi � 1/j� jpi�2

�
d�
ˇ̌̌

C
2

pi

p
pi � 1

ˇ̌̌
ju"kxi .x/j

.pi�2/=2 u"kxi .x/ � jUxi .x/j
.pi�2/=2 Uxi .x/

ˇ̌̌
�

Z Mi .x/

0

ˇ̌̌q
g00i;"k .�/ �

p
.pi � 1/j� jpi�2

ˇ̌̌
d�

C
2

pi

p
pi � 1

ˇ̌̌
ju"kxi .x/j

.pi�2/=2 u"kxi .x/ � jUxi .x/j
.pi�2/=2 Uxi .x/

ˇ̌̌
:

Thanks to (7.6), one can apply the dominated convergence to conclude that the first term
in the right-hand side converges to 0 when k goes to C1. By also using that u"kxi .x/
converges to Uxi .x/, we finally get (7.7).

By using the chain rule in Sobolev spaces, we also obtain that Uxi 2W
1;pi .BR=4/ and

satisfies the estimate claimed in the statement of Theorem S. The proof is complete.

A. A weak maximum principle

LetGWRN! Œ0;C1/ be a convex function such thatG.z/>G.0/ for every z2 RN n ¹0º.
Let � WR! R be a Lipschitz function, with the following property: there exists M > 0

such that

�.t/ D

²
M; if t �M;
�M; if t � �M:

Given a ball B � RN , f 2 L1.B/ and U 2 W 1;1.B/ \ L1.B/ such that

kU kL1.B/ �M and
Z
B

G.rU/ dx < C1;

we consider the functional

F .v/ D

Z
B

ŒG.rv/C f �.v/� dx; for every v 2 U CW 1;1
0 .B/:

Lemma A.1. If u is a minimum of F , then kukL1.B/ �M .

Proof. We want to test the minimality of u against the truncated function

v WD max¹�M;min¹u;M ºº:

By construction, we still have v 2 U CW 1;1
0 .B/, and by minimality of u, we get

F .u/ � F .v/:
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By the properties of �, we have

F .v/ D

Z
¹juj�M º

ŒG.ru/C f �.u/� dxC

Z
¹juj>M º

G.0/ dx

C

Z
¹u>M º

f �.M/ dx C

Z
¹u<�M º

f �.�M/dx:

Hence, using that �.u/ D �.M/ when u � M and �.u/ D �.�M/ when u � �M , by
comparing the last two displays, we getZ
¹juj>M º

G.ru/ dx �

Z
¹juj>M º

G.0/ dx; that is,
Z
¹juj>M º

ŒG.ru/ �G.0/� dx � 0:

Thanks to the properties of G, we deduce that ru D 0 almost everywhere on the set
¹juj > M º. It follows that ru D rv almost everywhere, and since u D v D U on @B ,
this implies that uD v almost everywhere in B . In particular, juj �M almost everywhere
in B .
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