Building-integrated photovoltaic technologies have considerable potential for the generation of onsite renewable energy. Despite this, their market penetration is in a relatively embryonic phase with respect to grounded or building-attached solutions, and they have limited commercial application. Their integration into building façades may represent a key asset in meeting the net-zero emissions by 2050 scenario, in particular for high-rise buildings in which the roof-to-façade ratio is unfavorable for the fulfillment of the energy load using only roof photovoltaic technology. Moreover, different façade orientations extend the production time throughout the day, flattening the power generation curve. Because of the present interest in BIPV systems, several researchers have conducted high-quality reviews focused on specific designs. In this work, various photovoltaic technologies and methods used to manufacture façade BIPV devices are reviewed with the aim of presenting researchers with the recent technological advancements and providing an overview of photovoltaic systems designed for different purposes and their applications rather than a detailed analysis of a specific technology. Lastly, future prospects and the limitations of building-integrated photovoltaic devices are presented.
Review of Façade Photovoltaic Solutions for Less Energy-Hungry Buildings
Giulio MangheriniPrimo
Conceptualization
;Valentina Diolaiti
Secondo
Writing – Review & Editing
;Paolo BernardoniSupervision
;Alfredo AndreoliPenultimo
Supervision
;Donato Vincenzi
Ultimo
Project Administration
2023
Abstract
Building-integrated photovoltaic technologies have considerable potential for the generation of onsite renewable energy. Despite this, their market penetration is in a relatively embryonic phase with respect to grounded or building-attached solutions, and they have limited commercial application. Their integration into building façades may represent a key asset in meeting the net-zero emissions by 2050 scenario, in particular for high-rise buildings in which the roof-to-façade ratio is unfavorable for the fulfillment of the energy load using only roof photovoltaic technology. Moreover, different façade orientations extend the production time throughout the day, flattening the power generation curve. Because of the present interest in BIPV systems, several researchers have conducted high-quality reviews focused on specific designs. In this work, various photovoltaic technologies and methods used to manufacture façade BIPV devices are reviewed with the aim of presenting researchers with the recent technological advancements and providing an overview of photovoltaic systems designed for different purposes and their applications rather than a detailed analysis of a specific technology. Lastly, future prospects and the limitations of building-integrated photovoltaic devices are presented.I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.