In recent years, CFD has proven to be a very useful asset to help with predicting complex flows in a wide range of situations, including multiphase and gas-particle flows. On this track, numerical modelling of particle-laden flows in multistage turbomachinery has become an important step in helping to analyse the behaviour of a discrete phase in gas turbines. Furthermore, unsteady effects due, for example, to rotor–stator interaction may have an effect on trajectories and capture efficiencies of the discrete phase. Unfortunately, computational times for transient simulations can be exceedingly high, especially if a discrete-phase needs also to be simulated. For this reason, this work reports a new method for the efficient and accurate simulation of particle-laden flows in gas turbine engines components. The Harmonic Balance Method is exploited to gain orders of magnitude speedup exploiting the idea that once the flow field has been embedded in the spectral basis, it can be reconstructed at any desired time. In this way, not only can the computational time needed to reach convergence of the flow field be dramatically reduced, but there is also no need to keep simulating the flow field during particle tracking. On the contrary, the continuous phase field can be retrieved at any desired time through flow reconstruction. This technique is conceptually simple, but, to the authors’ knowledge, has never been applied so far in particle-laden flow simulations and represents a novelty in the field. First, the implementation of the method is described, and details are given on how phase-lagged boundary conditions can be applied to flow and particles to further speed up the calculation. Then, some relevant case studies are presented to highlight the performance of the method.

Simulation of Particle Trajectories in Gas Turbine Components and Assessment of Unsteady Effects Using an Efficient Eulerian-Lagrangian Technique

Oliani S.
;
Casari N.;Pinelli M.;
2023

Abstract

In recent years, CFD has proven to be a very useful asset to help with predicting complex flows in a wide range of situations, including multiphase and gas-particle flows. On this track, numerical modelling of particle-laden flows in multistage turbomachinery has become an important step in helping to analyse the behaviour of a discrete phase in gas turbines. Furthermore, unsteady effects due, for example, to rotor–stator interaction may have an effect on trajectories and capture efficiencies of the discrete phase. Unfortunately, computational times for transient simulations can be exceedingly high, especially if a discrete-phase needs also to be simulated. For this reason, this work reports a new method for the efficient and accurate simulation of particle-laden flows in gas turbine engines components. The Harmonic Balance Method is exploited to gain orders of magnitude speedup exploiting the idea that once the flow field has been embedded in the spectral basis, it can be reconstructed at any desired time. In this way, not only can the computational time needed to reach convergence of the flow field be dramatically reduced, but there is also no need to keep simulating the flow field during particle tracking. On the contrary, the continuous phase field can be retrieved at any desired time through flow reconstruction. This technique is conceptually simple, but, to the authors’ knowledge, has never been applied so far in particle-laden flow simulations and represents a novelty in the field. First, the implementation of the method is described, and details are given on how phase-lagged boundary conditions can be applied to flow and particles to further speed up the calculation. Then, some relevant case studies are presented to highlight the performance of the method.
2023
Oliani, S.; Casari, N.; Pinelli, M.; Carnevale, M.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/2521030
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact