We study the sharp constant for the embedding of W 1,p 0 (omega) into Lq(omega), in the case 2 < p < q. We prove that for smooth connected sets, when q > p and q is sufficiently close to p, extremal functions attaining the sharp constant are unique, up to a multiplicative constant. This in turn gives the uniqueness of solutions with minimal energy to the Lane-Emden equation, with super-homogeneous right-hand side. The result is achieved by suitably adapting a linearization argument due to C.-S. Lin. We rely on some fine estimates for solutions of p-Laplace-type equations by L. Damascelli and B. Sciunzi.
Uniqueness of extremals for some sharp Poincaré-Sobolev constants
Brasco, L;
2023
Abstract
We study the sharp constant for the embedding of W 1,p 0 (omega) into Lq(omega), in the case 2 < p < q. We prove that for smooth connected sets, when q > p and q is sufficiently close to p, extremal functions attaining the sharp constant are unique, up to a multiplicative constant. This in turn gives the uniqueness of solutions with minimal energy to the Lane-Emden equation, with super-homogeneous right-hand side. The result is achieved by suitably adapting a linearization argument due to C.-S. Lin. We rely on some fine estimates for solutions of p-Laplace-type equations by L. Damascelli and B. Sciunzi.File | Dimensione | Formato | |
---|---|---|---|
bralin_TAMS.pdf
solo gestori archivio
Descrizione: Full text editoriale
Tipologia:
Full text (versione editoriale)
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
490.46 kB
Formato
Adobe PDF
|
490.46 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
2201.03394v3.pdf
accesso aperto
Descrizione: Pre-print
Tipologia:
Pre-print
Licenza:
Creative commons
Dimensione
479.14 kB
Formato
Adobe PDF
|
479.14 kB | Adobe PDF | Visualizza/Apri |
I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.