We study the sharp constant for the embedding of W 1,p 0 (omega) into Lq(omega), in the case 2 < p < q. We prove that for smooth connected sets, when q > p and q is sufficiently close to p, extremal functions attaining the sharp constant are unique, up to a multiplicative constant. This in turn gives the uniqueness of solutions with minimal energy to the Lane-Emden equation, with super-homogeneous right-hand side. The result is achieved by suitably adapting a linearization argument due to C.-S. Lin. We rely on some fine estimates for solutions of p-Laplace-type equations by L. Damascelli and B. Sciunzi.

Uniqueness of extremals for some sharp Poincaré-Sobolev constants

Brasco, L;
2023

Abstract

We study the sharp constant for the embedding of W 1,p 0 (omega) into Lq(omega), in the case 2 < p < q. We prove that for smooth connected sets, when q > p and q is sufficiently close to p, extremal functions attaining the sharp constant are unique, up to a multiplicative constant. This in turn gives the uniqueness of solutions with minimal energy to the Lane-Emden equation, with super-homogeneous right-hand side. The result is achieved by suitably adapting a linearization argument due to C.-S. Lin. We rely on some fine estimates for solutions of p-Laplace-type equations by L. Damascelli and B. Sciunzi.
2023
Brasco, L; Lindgren, E
File in questo prodotto:
File Dimensione Formato  
bralin_TAMS.pdf

solo gestori archivio

Descrizione: Full text editoriale
Tipologia: Full text (versione editoriale)
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 490.46 kB
Formato Adobe PDF
490.46 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
2201.03394v3.pdf

accesso aperto

Descrizione: Pre-print
Tipologia: Pre-print
Licenza: Creative commons
Dimensione 479.14 kB
Formato Adobe PDF
479.14 kB Adobe PDF Visualizza/Apri

I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/2519450
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 3
social impact