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UNIQUENESS OF EXTREMALS

FOR SOME SHARP POINCARÉ-SOBOLEV CONSTANTS

LORENZO BRASCO AND ERIK LINDGREN

To Peter Lindqvist, a gentleman and p−Laplacian master, on the occasion of his 70th birthday

Abstract. We study the sharp constant for the embedding of W 1,p
0

(Ω) into Lq(Ω), in the case 2 < p < q.
We prove that for smooth connected sets, when q > p and q is sufficiently close to p, extremal functions
attaining the sharp constant are unique, up to a multiplicative constant. This in turn gives the uniqueness
of solutions with minimal energy to the Lane-Emden equation, with super-homogeneous right-hand side.

The result is achieved by suitably adapting a linearization argument due to C.-S. Lin. We rely on some
fine estimates for solutions of p−Laplace–type equations by L. Damascelli and B. Sciunzi.
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1. Introduction

1.1. Setting of the problem. Let Ω ⊂ R
N be an open set, for 1 < p < ∞ we denote by D1,p

0 (Ω) the
completion of C∞

0 (Ω) with respect to the norm

ϕ 7→ ‖∇ϕ‖Lp(Ω).
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2 BRASCO AND LINDGREN

It is well-known that, under suitable assumptions on the set Ω, the space D1,p
0 (Ω) is continuously embedded

into Lq(Ω), provided the exponent q is such that

1 ≤ q ≤ p∗ =





N p

N − p
, if p < N,

any finite exponent, if p = N,

∞, if p > N,

see for example [32, Chapter 15, Sections 4 & 5]. In this paper, we are interested in studying the sharp
constant for this embedding, i.e., the quantity defined by

λp,q(Ω) = inf
u∈D1,p

0 (Ω)\{0}

ˆ

Ω

|∇u|p dx
(
ˆ

Ω

|u|q dx
) p

q

,

when the exponent q is super-homogeneous and subcritical, i.e., it satisfies

p < q < p∗.

This problem can be rewritten in equivalent form as

(1.1) λp,q(Ω) = inf
u∈D1,p

0 (Ω)

{
ˆ

Ω

|∇u|p dx :

ˆ

Ω

|u|q = 1

}
.

We want to address the question of uniqueness of extremals for the variational problem (1.1), provided the
latter is well-posed (i.e., it admits a solution). By uniqueness we mean uniqueness up to the choice of the
sign, also referred to as simplicity of λp,q(Ω).

We recall that the infimum in (1.1) is positive and it is actually a minimum, whenever Ω has finite volume.
Indeed, in this case the embedding

D1,p
0 (Ω) →֒ Lq(Ω),

is compact1, under the above restrictions on q. It is also useful to recall that in this case, we have that

‖∇ϕ‖Lp(Ω) and ‖ϕ‖W 1,p(Ω) := ‖∇ϕ‖Lp(Ω) + ‖ϕ‖Lp(Ω),

are equivalent norms on C∞
0 (Ω). It is sufficient to observe that on an open set with finite volume we have

the Poincaré inequality

CΩ

ˆ

Ω

|ϕ|p dx ≤
ˆ

Ω

|∇ϕ|p dx, for every ϕ ∈ C∞
0 (Ω),

at our disposal. Thus, under the assumptions we will take on Ω, the space D1,p
0 (Ω) can be identified with

the more common space W 1,p
0 (Ω), defined as the closure of C∞

0 (Ω) in the usual Sobolev space W 1,p(Ω). In
what follows, we will always make this identification.

Finally, it is plain to see that any minimizer u of (1.1) solves the following quasilinear version of the
Lane-Emden equation

(1.2) −∆pu = λ |u|q−2 u, in Ω,

with λ = λp,q(Ω).

1We point out that the variational problem (1.1) may be well-posed under more general assumptions on Ω, allowing for
suitable classes of unbounded sets, possibly with infinite volume. We do not insist on this point, since in any case our main
result will hold for a class of bounded and smooth open sets.
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1.2. Previous results. The question tackled in this paper is quite classical, it is thus important to recall
some existing results, so to put things into the right framework.

We start from the case of the Laplacian, i. e., we choose p = 2. We refer the interested reader to [5] for a
more comprehensive overview in this case.

It is known that for any open bounded connected set Ω ⊂ R
N , extremals are unique in the sub-homogeneous

regime, i.e., when 1 ≤ q < 2, without any regularity assumption on Ω. Actually, in this regime the result
is much stronger, since one can infer uniqueness of positive solutions to equation (1.2). This is a classical
result by Brezis and Oswald, see [7]. By using this result and the fact that any extremal for λ2,q must have
constant sign (see [5, Proposition 2.3]), we get the simplicity property.

In the limit case q = 2, the quantity λ2,2(Ω) is nothing but the first eigenvalue of the Dirichlet-Laplacian.
Thus, we fall into the realm of Linear Spectral Theory, which guarantees again the simplicity property (see
for example [24, Theorem 1.2.5]).

When turning to the super-homogeneous regime 2∗ > q > 2, the picture changes. Uniqueness of extremals
is known to hold in balls (see for example [23, Theorem 2 & Corollary 1]) and for planar convex sets (see
[30, Theorem 1] and also [5, Theorem 4.5]). However, there are examples that show that extremals may not
be unique. In [34, Proposition 1.2] Nazarov shows that simplicity of λ2,q(Ω) fails when Ω is a sufficiently
thin spherical shell. Another counter-example can be found in [5, Example 4.7], where the authors consider
a starshaped set consisting of two hypercubes overlapping in a small region near one corner. The example
in [5] is greatly inspired by Dancer’s fundamental contributions on multiplicity results for the Lane-Emden
equation, see [12, 13].

For a general 1 < p < ∞, uniqueness of minimizers (up to multiplicity) holds true again for the sub-

homogeneous case 1 ≤ q < p. This is a consequence of the stronger uniqueness result for positive solutions
of (1.2) contained in [14, Théorème 1] (see also [26, Theorem 4]), which is the quasilinear counterpart of the
result by Brezis and Oswald. When combining this result with the fact that extremals for λp,q must have
constant sign (see for example the proof of [26, Theorem 1] or [22, Theorem 1.2]), we can infer simplicity.

For q = p, the quantity λp,p(Ω) is the first eigenvalue of the p−Laplacian with Dirichlet conditions, then
it is mandatory to refer to [31] for the relevant simplicity result.

For p∗ > q > p, the situation is again different. Clearly, this is not a surprise, in light of the case p = 2
previously discussed. As before, simplicity is known to be true in a ball (see [1]), but fails in general. The
counter-example by Nazarov works in this case, too. We also refer to Kawohl’s paper [20] for the very same
example. It is important to recall the precise structure of this counter-example: in [20, 34] it is observed
that for every q > p, there exists a sufficiently thin spherical shell such that simplicity for λp,q fails.

Finally, the limiting case q = p∗ deserves a comment. It is well-known that in this case the variational
problem (1.1) is well-defined only for p > N . The latter implies that the limit exponent is q = ∞ and
simplicity is known to hold in bounded convex sets, as recently proved by Hynd and the second author, see
[25, Theorem 1.1]. On the other hand, simplicity can fail already for starshaped sets, see [25, Section 5]. It
is not difficult to see that the very same counter-examples of [25] can be adapted to prove more generally
that simplicity in starshaped sets fails already for q large enough. Indeed, the counter-examples in [25] are
given by suitable non-convex sets having two orthogonal axis of symmetry, for which one can prove that the
extremals for λp,∞ do not inherit the same symmetries. These examples include for instance a thin dumbbell
domain or a thin bowtie-type domain, see [25, Section 5]. This lack of symmetry allows to produce at least
two distinct extremals, by simply composing an extremal with a reflection. By an easy limit argument, one
can show that the same phenomenon must happen for λp,q, when is q finite and large enough.

1.3. Main results. The main result of this paper asserts that for q > p and q close enough to p, simplicity
of λp,q must hold, at least in sets which are regular enough. More precisely, we have the following:
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Theorem 1.1. Let p > 2 and let Ω ⊂ R
N be an open bounded connected set, with C1,α boundary, for some

0 < α < 1. There exists q = q(N, p,Ω) > p such that for every p ≤ q < q the extremals of (1.1) are unique,

up to the choice of their sign.

Remark 1.2. In light of the counter-examples discussed above, the previous result is essentially optimal.
Indeed, these show that we cannot expect uniqueness to hold for all q > p, without any assumptions on the
set Ω. It is sufficient to think to the case of the spherical shell. However, we are not able to say whether the
C1,α regularity of the boundary is really necessary or not: we will try to explain in the next subsection what
are the difficulties in removing this assumption. Finally, we recall that for p = 2, the very same result of
Theorem 1.1 is true for every open bounded connected set Ω and even for more general open sets, without
any regularity assumption on the boundary, see [5, Proposition 4.3].

The result of Theorem 1.1 in turn implies a uniqueness result for the solutions of (1.2) having minimal
energy. More precisely, for λ > 0 let us introduce the energy functional

Fq,λ(ϕ) =
1

p

ˆ

Ω

|∇ϕ|p dx− λ

q

ˆ

Ω

|ϕ|q dx, for every ϕ ∈ W 1,p
0 (Ω),

which is naturally associated to (1.2). In particular, we observe that u is a solution of (1.2) if and only if it
is a critical point of Fq,λ. Moreover, for a critical point u, it is easily seen that

Fq,λ(u) =

(
λ

p
− λ

q

)
ˆ

Ω

|u|q dx.

It is sufficient to test the weak formulation of (1.2) with u itself.

Definition 1.3. With the notation above, we will say that u ∈ W 1,p
0 (Ω) is a nontrivial solution of (1.2)

with minimal energy if
ˆ

Ω

|u|q dx = inf

{
ˆ

Ω

|v|q dx : v ∈W 1,p
0 (Ω) \ {0} is a critical point of Fq,λ

}
.

We then obtain the following

Corollary 1.4. Let λ > 0, with the notation and assumptions of Theorem 1.1, for every p < q < q there

exists a unique nontrivial solution of (1.2) with minimal energy, up to the choice of the sign.

1.4. Some comments on the proof. The proof of Theorem 1.1 is largely inspired by that of [30, Lemma
3], dealing with the case of the Laplacian, i.e., p = 2 and q > 2. The result in [30] is actually stronger,
as it permits to infer uniqueness of positive solutions to (1.2) for q sufficiently close to 2 and not only for
extremals of λ2,q. This is achieved under the assumption that Ω is a smooth2 open bounded and convex set.

The proof of [30] proceeds by contradiction and it is based on a linearization argument. In order to clarify
the contents of our paper, let us try to sketch the idea of [30, Lemma 3], by sticking for the moment to the
simpler case of extremals for λ2,q.

By assuming that simplicity fails for every q > 2, there must exist a sequence {qn}n∈N such that qn ց 2
and λ2,qn(Ω) admits two distinct positive minimizers un and vn. Their difference has the following properties:

• un − vn is sign-changing on Ω;

• un − vn solves the linearized equation

(1.3) −∆ψ = λ2,qn(Ω)Vn ψ, where Vn := (qn − 1)

ˆ 1

0

((1− t) vn + t un)
qn−2 dt.

2The smoothness hypothesis in not explicitly stated in [30, Lemma 3]. However, a closer inspection of its proof reveals that
this is needed in the argument which uses the moving plane method, at the beginning of page 17 there.
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Moreover, by using the minimality, it is not difficult to see that both un and vn must converge to a first
positive eigefunction of the Dirichlet-Laplacian, with unit L2 norm. By further using that

λ2,qn(Ω) → λ2,2(Ω) and Vn → 1,

we get that the rescaled difference

φn :=
un − vn

‖un − vn‖L2(Ω)
,

converges to a non-trivial limit function φ, which can be proved to be a sign-changing first eigenfunction of
the Dirichlet-Laplacian. This gives the desired contradiction, since first eigenfunctions must have constant
sign.

The general case of positive solutions to (1.2) is more complicated, since obtaining that solutions must
converge to a first Dirichlet eigenfunction requires some nontrivial a priori “universal” estimates, i.e., esti-
mates which are uniform as q converges to 2. This is tackled by means of an ingenious trick, which exploits
the moving plane method: it is only here that the smoothness and convexity assumptions come into play in
[30]. We also refer to [13, Theorem 5] and [10, Theorem 4.1] for a similar uniqueness result, for some classes
of planar sets (symmetric but not necessarily convex).

The transposition of this method to the case of the p−Laplacian is bound to immediately face some huge
obstructions, already in the simpler case of extremals for λp,q. This is mainly due to the nonlinearity of
the p−Laplacian: in this case, we can say that the difference un − vn of two positive extremals for λp,qn(Ω)
solves the linearized equation

(1.4) − div(An ∇ψ) = λp,qn(Ω)Vn ψ,

where Vn is as in (1.3), but now we have the coefficient matrix An which is degenerate elliptic. More precisely,
we have

1

C

(
|∇un|p−2 + |∇vn|p−2

)
|ξ|2 ≤ 〈An ξ, ξ〉 ≤ C

(
|∇un|p−2 + |∇vn|p−2

)
|ξ|2, for every ξ ∈ R

N .

Now, inferring some suitable compactness for the rescaled sequence

φn :=
un − vn

‖un − vn‖L2(Ω)
,

and passing to the limit in the linearized equation above is quite problematic. It is precisely here that we need
global regularity informations on the functions un and vn, which in turn call into play for some assumptions
on the boundary of Ω. More precisely, we need to know that |∇un| and |∇vn| are still integrable, even when
raised to some suitable negative powers.

This in turn permits to obtain a compact embedding in some Lt space, for weighted Sobolev spaces of
functions such that

ˆ

Ω

(
|∇un|p−2 + |∇vn|p−2

)
|∇ϕ|2 dx < +∞.

Here we make use of some striking results proved by Damascelli and Sciunzi in [11]. Unfortunately, the
results in [11] are stated for positive solutions of a Lane-Emden–type equation

−∆pu = f(u),

without explicit a priori estimates, thus it is not clear whether these regularity estimates hold uniformly or
not, as n goes to ∞. In the same way, the embedding results are stated for a positive solution, without
making precise in the statement how these embeddings depend on the solution itself. Here as well, we have
to guarantee that both the embedding constant and the target space are stable, as n goes to ∞.

For these reasons, a non-negligible part of the paper is devoted to reprove these results. We claim no origi-
nality here, however it is mandatory to go through the proofs of [11] and carefully check that all the regularity
estimates and the weighted embeddings hold uniformly for the family of solutions {un}n∈N, {vn}n∈N.
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This will show that it is possible to pass to the limit in the linearized equation. Then the conclusion of
the proof is similar to that of [30] exposed above: we will obtain convergence to a non-trivial limit function
φ, which can be shown again to be a sign-changing first eigenfunction of a certain weighted linear eigenvalue
problem. We will show that this is a contradiction, by means of a suitable weighted Picone–type identity.

Finally, we humbly admit that we have not been able to extend our result to the more general case of positive
solutions of (1.2). This seems quite a challenging task, which we plan to tackle in the future.

1.5. Plan of the paper. In Section 2 we prove some preliminary facts, which will be needed for the
linearization argument previously discussed. In particular, we devote this section to prove uniform (with
respect to q) regularity estimates for positive extremals of (1.1), as well as to discuss the stability of weighted
embeddings, with respect to a varying weight. Here we need to go through the proofs of [11].

In Section 3, we analyze the first eigenvalue of a certain weighted linear eigenvalue problem. This is a
crucial ingredient for the proof of our main result. We prove in particular the existence of a first eigenfunction
and its uniqueness, up to a multiplicative constant.

The central part of the paper is then Section 4, where we prove Theorem 1.1, along the lines detailed
above. This section also contains the proof of Corollary 1.4.

Finally, we include three appendices: Appendix A and Appendix B both contain some technical facts,
while Appendix C contains the crucial regularity results by Damascelli and Sciunzi, with a uniform control
on the relevant a priori estimates.

Acknowledgements. We wish to thank Giovanni Franzina, who first drew our attention on Lin’s paper
[30]. L.B. wants to thank Giulio Ciraolo for first introducing him to the results by Damascelli and Sciunzi,
some years ago. We are grateful to Vladimir Bobkov and Grey Ercole for pointing out the papers [35] and
[15], respectively.

Part of this work has been done during a visit of E. L. to Bologna in October 2018 and a visit of L. B. to
Stockholm in March 2019. Hosting institutions are gratefully acknowledged. Erik Lindgren was supported
by the Swedish Research Council, grant no. 2017-03736.

2. Preliminaries

2.1. Notation. Here we briefly fix some notations that we are going to use throughout the paper. We will
indicate by ωN the measure of the N−dimensional open ball, with radius 1.

If u ∈ L1
loc(R

N ), we set

u+ := max{u, 0} and u− := max{−u, 0}.
For an N ×N matrix A = (ai,j)

N
i,j=1 with real coefficients, we will consider its norm

|A| =




N∑

i,j=1

|ai,j |2




1
2

.

2.2. Basic properties. We start with a well-known result, i.e. the fact that minimizers of (1.1) have
constant sign. We give here an elementary proof. Observe that the result holds true regardless of the fact
that Ω is connected or not and no regularity assumptions are needed. For simplicity, we assume Ω to have
finite volume: as explained in the introduction, this is a sufficient condition to have well-posedness of (1.1).

Lemma 2.1. Let 1 < p < q < p∗ and let Ω ⊂ R
N be an open set, with finite volume. Then every solution

of (1.1) must have constant sign.

Proof. Let u ∈ W 1,p
0 (Ω) be a solution of (1.1) and let us suppose that u+ 6≡ 0. By minimality, we have that

u verifies
ˆ

Ω

〈|∇u|p−2 ∇u,∇ϕ〉 dx = λp,q(Ω)

ˆ

Ω

|u|q−2 uϕdx, for every ϕ ∈W 1,p
0 (Ω).
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By choosing the test function ϕ = u+, we get
ˆ

Ω

|∇u+|p dx = λp,q(Ω)

ˆ

Ω

uq+ dx.

Thanks to the fact that p/q < 1 and that u has unitary Lq norm, we have

(2.1)

ˆ

Ω

uq+ dx ≤
(
ˆ

Ω

uq+ dx

) p
q

,

with strict inequality, unless the Lq norm of u+ is 1. The last two equations imply that we must have

λp,q(Ω) ≤

ˆ

Ω

|∇u+|p dx
(
ˆ

Ω

|u+|q dx
) p

q

≤

ˆ

Ω

|∇u+|p dx
ˆ

Ω

|u+|q dx
= λp,q(Ω).

Thus equality must hold everywhere, in particular equality in (2.1) gives that u+ has unitary Lq norm. By
recalling the normalization taken on u, this implies that u = u+. This gives the desired conclusion. �

The following technical lemma holds for positive solutions of (1.2), not necessarily minimizers of (1.1). It
states that if there are two different solutions of (1.2), their difference must change sign. Here as well, no
regularity assumptions on Ω are needed.

Lemma 2.2. Let 1 < p < q < p∗ and let Ω ⊂ R
N be an open connected set, with finite volume. Let λ > 0

and let u, v ∈ W 1,p
0 (Ω) be two distinct positive solutions of the Lane-Emden equation (1.2). Then we must

have

|{x ∈ Ω : u(x) > v(x)}| > 0 and |{x ∈ Ω : u(x) < v(x)}| > 0.

In other words, the difference u− v must change sign in Ω.

Proof. We argue by contradiction and suppose, for example, that

|{x ∈ Ω : u(x) < v(x)}| = 0.

Thus we are assuming that

(2.2) u(x) ≥ v(x) for a. e. x ∈ Ω and |{x ∈ Ω : u(x) > v(x)}| > 0.

Let {vn}n∈N ⊂ C∞
0 (Ω) be a sequence such that

lim
n→∞

‖∇vn −∇v‖Lp(Ω) = 0,

which exists by definition of W 1,p
0 (Ω). We can assume each vn to be non-negative and that we have almost

everywhere convergence in Ω, as well. For every ε > 0, we take the admissible test function ϕ = vpn/(u+ε)
p−1

in the weak formulation of the equation for u. This yields

λ

ˆ

Ω

uq−1 vpn
(u + ε)p−1

dx =

ˆ

Ω

〈
|∇u|p−2 ∇u,∇

(
vpn

(u+ ε)p−1

)〉
dx

=

ˆ

Ω

〈
|∇(u+ ε)|p−2 ∇(u+ ε),∇

(
vpn

(u+ ε)p−1

)〉
dx

≤
ˆ

Ω

|∇vn|p dx.

In the last inequality, we used Picone’s inequality for the p−Laplacian, see [2]. By taking the limit as n goes
to ∞, we thus get

λ

ˆ

Ω

uq−1 vp

(u+ ε)p−1
dx ≤

ˆ

Ω

|∇v|p dx.
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On the other hand, by using that v is a solution of the same equation, we get
ˆ

Ω

|∇v|p dx = λ

ˆ

Ω

vq dx.

We thus obtain for every ε > 0
ˆ

Ω

uq−1 vp

(u+ ε)p−1
dx ≤

ˆ

Ω

vq dx.

By taking the limit as ε goes to 0, using Fatou’s Lemma and the fact that u is positive, from the previous
estimate we get

ˆ

Ω

uq−p vp ≤
ˆ

Ω

vq dx that is

ˆ

Ω

(uq−p − vq−p) vp dx ≤ 0.

Since q − p > 0 and v > 0 in Ω by the minimum principle and the connectedness assumption, we get a
contradiction with (2.2). �

Remark 2.3. We seize the opportunity to notice that, in the semilinear case p = 2, the previous result can
be obtained by using the fact that

ˆ

Ω

(v∆u− u∆v) dx = 0,

as in the proof of [30, Lemma 3]. This is based on the fact that −∆ is a self-adjoint operator, thus this
proof can not be extended to the case p 6= 2. We circumvented this difficulty by using a convexity trick, i.e.
Picone’s inequality.

2.3. Uniform estimates. In the following result, we give an L∞ estimate for solutions of the Lane-Emden
equation. The result is well-known, but here the main focus is on the precise form of the a priori estimate.

Proposition 2.4 (L∞ estimate). Let 1 < p < q0 < p∗ and let Ω ⊂ R
N be an open set, with finite volume.

For every p ≤ q ≤ q0, let u ∈ W 1,p
0 (Ω) be a positive weak solution of the Lane-Emden equation (1.2), for

some λ > 0. Then we have u ∈ L∞(Ω), with the following estimate

‖u‖L∞(Ω) ≤ C
(
λ

N
p q ‖u‖Lq(Ω)

) p q
p q−(q−p) N

,

for a constant C = C(N, p, q0) > 0.

Proof. As already said, the fact that u ∈ L∞(Ω) is well-known, we focus on obtaining the precise a priori
estimate, through a Moser’s iteration. The function u solves

ˆ

Ω

〈|∇u|p−2 ∇u,∇ϕ〉 dx = λ

ˆ

Ω

uq−1 ϕ,

for every ϕ ∈W 1,p
0 (Ω). We take β ≥ 1 and insert the test function

ϕ = uβ.

This gives
β pp

(β + p− 1)p

ˆ

Ω

∣∣∣∇u
β+p−1

p

∣∣∣
p

dx = λ

ˆ

Ω

uq−1+β ≤ λ ‖u‖q−p
L∞(Ω)

ˆ

Ω

uβ+p−1 dx.

By observing that for every β ≥ 1 we have
(
β + p− 1

p

)p
1

β
≤
(
β + p− 1

p

)p−1

,

we can rewrite the previous estimate as
ˆ

Ω

∣∣∣∇u
β+p−1

p

∣∣∣
p

dx ≤
(
β + p− 1

p

)p−1

λ ‖u‖q−p
L∞(Ω)

ˆ

Ω

uβ+p−1 dx.
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We set for simplicity ϑ = (β + p− 1)/p, thus the previous inequality is equivalent to

(2.3)

ˆ

Ω

∣∣∇uϑ
∣∣p dx ≤ ϑp−1 λ ‖u‖q−p

L∞(Ω)

ˆ

Ω

upϑ dx.

We now need to distinguish three cases, depeding on whether p < N , p = N or p > N .

Case 1 < p < N : we recall the Sobolev inequality

SN,p

(
ˆ

Ω

|ϕ|p∗

dx

) p
p∗

≤
ˆ

Ω

|∇ϕ|p dx, for every ϕ ∈ W 1,p
0 (Ω),

where p∗ = (N p)/(N − p). By using this inequality in the left-hand side of (2.3), we get

SN,p

(
ˆ

Ω

up
∗ϑ dx

) p
p∗

≤ ϑp−1 λ ‖u‖q−p
L∞(Ω)

ˆ

Ω

upϑ dx,

and thus

(2.4)

(
ˆ

Ω

up
∗ϑ dx

) 1
p∗ϑ

≤ (ϑ
1
ϑ )

p−1
p

(
λ ‖u‖q−p

L∞(Ω)

SN,p

) 1
p ϑ (ˆ

Ω

upϑ dx

) 1
p ϑ

.

We define the sequence

ϑ0 =
q

p
, ϑi+1 =

p∗

p
ϑi =

(
N

N − p

)i+1
q

p
,

and use (2.4) with ϑi. By iterating infinitely many times and observing that

∞∑

i=0

1

p ϑi
=

1

p

p

q

∞∑

i=0

(
N − p

N

)i

=
N

p q
,

and

lim
n→∞

n∏

i=0

ϑ
1
ϑi

i = exp

(
∞∑

i=0

logϑi
ϑi

)

= exp

(
p

q
log

q

p

∞∑

i=0

(
N − p

N

)i

+
p

q
log

N

N − p

∞∑

i=0

i

(
N − p

N

)i
)

≤ exp

(
log

q0
p

∞∑

i=0

(
N − p

N

)i
)

exp

(
log

N

N − p

∞∑

i=0

i

(
N − p

N

)i
)

=: C0,

we obtain

(2.5) ‖u‖L∞(Ω) ≤ C
p−1
p

0

(
λ

SN,p

) N
p q

‖u‖
(q−p)N

p q

L∞(Ω)

(
ˆ

Ω

uq dx

) 1
q

,

where C0 = C0(N, p, q0) > 0. We now observe that

(q − p)N

p q
< 1 ⇐⇒ q < p∗,

which holds true. Thus from (2.5) we get

‖u‖L∞(Ω) ≤ C
(p−1) q

p q−(q−p) N

0

(
λ

SN,p

) N
p q−(q−p) N

‖u‖
p q

p q−(q−p) N

Lq(Ω) ,

as desired.
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Case p = N . In this case, we do not have the Sobolev inequality at our disposal. We can replace it with the
following Ladyzhenskaya interpolation inequality for N < γ <∞ (see [27, Theorem 12.83])

LN,γ

(
ˆ

Ω

|ϕ|γ dx
)N

γ

≤
(
ˆ

Ω

|∇ϕ|N dx

) γ−N
γ
(
ˆ

Ω

|ϕ|N dx

)N
γ

,

for every ϕ ∈W 1,N
0 (Ω). We use this inequality with the choice γ = 2N in (2.3). This gives

LN,2N

(
ˆ

Ω

u2N ϑ dx

) 1
2

≤
(
ϑN−1 λ ‖u‖q−N

L∞(Ω)

ˆ

Ω

uN ϑ dx

) 1
2
(
ˆ

Ω

uN ϑ dx

) 1
2

.

After some algebraic manipulations, we get the following replacement of (2.5)

(2.6)

(
ˆ

Ω

u2N ϑ dx

) 1
2 N ϑ

≤
(
ϑ

1
ϑ

)N−1
2N

(
λ ‖u‖q−N

L∞(Ω)

L2
N,2N

) 1
2 N ϑ (

ˆ

Ω

uN ϑ dx

) 1
N ϑ

.

We are now in the same situation as above. We define this time

ϑ0 =
q

N
, ϑi+1 = 2ϑi = 2i+1 q

N
,

and use (2.6) with ϑi. We observe that
∞∑

i=0

1

2N ϑi
=

1

2N

N

q

∞∑

i=0

2−i =
1

q
,

and

lim
n→∞

n∏

i=0

ϑ
1
ϑi

i = exp

(
∞∑

i=0

logϑi
ϑi

)

= exp

(
N

q
log

q

N

∞∑

i=0

(
1

2

)i

+
N

q
log 2

∞∑

i=0

i

(
1

2

)i
)

≤ exp

(
log

q0
N

∞∑

i=0

(
1

2

)i
)

exp

(
log 2

∞∑

i=0

i

(
1

2

)i
)

=: C1,

thus by iterating the estimate we obtain

‖u‖L∞(Ω) ≤ C
N−1
2N

1

(
λ

L2
N,2N

) 1
q

‖u‖1−
N
q

L∞(Ω)

(
ˆ

Ω

uq dx

) 1
q

,

where C1 = C1(N, q0) > 0. With some elementary manipulations, we now get the desired estimate.

Case p > N . This is the easiest case, it is sufficient to use the Morrey–type interpolation inequality (see
Proposition A.4 below)

‖ϕ‖L∞(Ω) ≤ QN,p

(
ˆ

Ω

|∇ϕ|p dx
) N

p q−(q−p) N
(
ˆ

Ω

|ϕ|q dx
) p−N

p q−(q−p) N

, for every ϕ ∈ W 1,p
0 (Ω).

By further observing that from the equation we have
ˆ

Ω

|∇u|p dx = λ

ˆ

Ω

|u|q dx,

we get

‖u‖L∞(Ω) ≤ QN,p λ
N

pq −(q−p) N

(
ˆ

Ω

|u|q dx
) p

p q−(q−p) N

.

This concludes the proof. �
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The following uniform C1 estimate for solutions of (1.1) will play a crucial role in the proof of our main
result. Here we need to enforce the assumptions on Ω and to work with minimizers of (1.1).

Theorem 2.5. Let 1 < p < q0 < p∗ and let Ω ⊂ R
N be an open bounded connected set, with boundary of

class C1,α, for some 0 < α < 1. For every p ≤ q ≤ q0, let uq ∈ W 1,p
0 (Ω) be a positive minimizer of (1.1).

Then there exist χ = χ(α,N, p, q0,Ω) ∈ (0, 1), δ = δ(α,N, p, q0,Ω) > 0 and µ0 = µ0(α,N, p, q0,Ω) > 0,
µ1 = µ1(α,N, p, q0,Ω) > 0 such that:

• uq ∈ C1,χ(Ω) with the uniform estimate

‖uq‖C1,χ(Ω) ≤ L,

for some L = L(α,N, p,Ω, q0) > 0;

• by defining Ωδ =
{
x ∈ Ω : dist(x, ∂Ω) ≤ δ

}
, we have

|∇uq| ≥ µ0, in Ωδ,

and

uq ≥ µ1, in Ω \ Ωδ.

Proof. As already observed, each uq is a solution of the quasilinear equation

−∆puq = λp,q(Ω)u
q−1
q , in Ω,

with homogeneous Dirichlet boundary conditions and the normalization condition
ˆ

Ω

|uq|q dx = 1.

By [17] (see also [3, Theorem 1]), we know that the function q 7→ λp,q(Ω) is continuous and positive. Thus
there exist two constants Λ0, λ0 > 0 depending only on N, p,Ω and q0 such that

(2.7) λ0 ≤ λp,q(Ω) ≤ Λ0, for every q ∈ [p, q0].

By using this fact and the normalization condition, we get from Proposition 2.4 that there exists a constant
C = C(N, p, q0,Ω) > 0 such that

‖uq‖L∞ ≤ C, for every q ∈ [p, q0].

The uniform C1,χ(Ω) estimate now follows by applying [29, Theorem 1].

As for the uniform lower bound on the gradient, we observe at first that we can apply a suitable version of
the Hopf’s Lemma (see [33, Theorem 1]) to each uq. This yields

min
∂Ω

|∇uq| > 0, for every p ≤ q ≤ q0.

By using that the family {|∇uq|}p≤q≤q0 has a uniform C0,χ(∂Ω) estimate, an application of Arzelà-Ascoli
Theorem gives that there exists a constant µ > 0 such that

min
∂Ω

|∇uq| ≥ µ, for every p ≤ q ≤ q0.

We now choose δ0 > 0 sufficiently small, such that each point x ∈ Ωδ0 can be uniquely written as

x = x′ − |x′ − x| νΩ(x′), with x′ ∈ ∂Ω.

This is possible thanks to the regularity of ∂Ω. Here νΩ stands for the normal outer versor. We then get for
every p ≤ q ≤ q0 , every 0 < δ ≤ δ0 and every x ∈ Ωδ

|∇uq(x)| ≥ |∇uq(x′)| −
∣∣∣|∇uq(x′)| − |∇uq(x)|

∣∣∣ ≥ µ− L |x′ − x|χ ≥ (µ− L δχ).

If we now choose

δ = min

{(
µ

2

1

L

) 1
χ

, δ0

}
,
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and set µ0 = µ/2, we obtain

|∇uq(x)| ≥ µ0, for every x ∈ Ωδ, p ≤ q ≤ q0.

Finally, the uniform lower bound on uq in Ω \Ωδ can be proved by observing that

min
Ω\Ωδ

uq > 0, for every p ≤ q ≤ q0,

thanks to the minimum principle. As before, since the family {uq}p≤q≤q0 is equi-bounded and equi-Lipschitz,
by Arzelà-Ascoli Theorem we get the existence of µ1 > 0 such that

min
Ω\Ωδ

uq ≥ µ1, for every p ≤ q ≤ q0.

This concludes the proof. �

Remark 2.6. We remark that the conclusion of the theorem above also holds for δ/2. The lower bound
on the gradient is immediate since Ωδ/2 ⊂ Ωδ. The lower bound on uq can be deduced with an identical
compactness argument.

2.4. Weighted embeddings. The next result is due to Damascelli and Sciunzi, see [11]. We are interested
in the stability both of the embedding constant and of the embedding exponent, with respect to a varying
power q. We point out that the exponent σ0 below is not optimal, but it will be largely sufficient for our
purposes.

Theorem 2.7 (Uniform weighted Sobolev inequality). Let 2 < p < q0 < p∗ and let Ω ⊂ R
N be an open

bounded connected set, with boundary of class C1,α, for some 0 < α < 1. For every p ≤ q ≤ q0, let

uq ∈ W 1,p
0 (Ω) be a positive minimizer of (1.1). We define

(2.8) σ0 = 2

(
1− 1

(2 p− 3)N

)−1

,

then for every 2 < σ < σ0, there exists T = T (α,N, p, q0, σ,Ω) > 0 such that

(2.9) T
(
ˆ

Ω

|ϕ|σ dx
) 2

σ

≤
ˆ

Ω

|∇uq|p−2 |∇ϕ|2 dx, for every ϕ ∈ C∞
0 (Ω), q ∈ [p, q0].

Moreover, such an inequality holds for every ϕ ∈ W 1,p
0 (Ω), as well. The constant T goes to 0 as σ ր σ0.

Proof. The inequality follows from [11, Theorem 3.1], by making the choices (with the notations of [11])

ρ = |∇uq|p−2, p = 2, t =
2 p− 3

2 p− 4
, γ = N − 1− 2 p− 3

2 p− 4
.

However, since we are particularly interested in keeping track of the dependence of the constant T on the
data, we will briefly repeat the proof of [11].

For every ϕ ∈ C∞
0 (Ω), we recall the classical representation formula

ϕ(x) = C

ˆ

RN

〈
∇ϕ(y), x− y

|x− y|N
〉
dy,

where C = C(N) > 0, see for example [18, Lemma 7.14]. This in turn implies that

|ϕ(x)| ≤ C

ˆ

Ω

|∇ϕ(y)|
|x− y|N−1

dy, for every x ∈ Ω.

We still use the notation

t =
2 p− 3

2 p− 4
, γ = N − 1− t = N − 1− 2 p− 3

2 p− 4
,

then by using Hölder’s inequality with exponents

2 t and 2 t/(2 t− 1),
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we obtain

|ϕ(x)| ≤ C

(
ˆ

Ω

1

|∇uq|t (p−2) |x− y|γ dy
) 1

2 t



ˆ

Ω

(
|∇ϕ(y)| |∇uq|

p−2
2

|x− y|N−1− γ
2 t

) 2 t
2 t−1

dy




2 t−1
2 t

.

Observe that by definition

t (p− 2) = p− 3

2
< p− 1 and γ < N − 2,

thus we can apply Theorem C.5 with r = t (p− 2) and get

(2.10) |ϕ(x)| ≤ C S 1
2 t




ˆ

Ω

(
|∇ϕ(y)| |∇uq|

p−2
2

|x− y|N−1− γ
2 t

) 2 t
2 t−1

dy





2 t−1
2 t

.

For simplicity, we now set

F (y) =
(
|∇ϕ(y)| |∇uq(y)|

p−2
2

) 2 t
2 t−1

,

and observe that

(2.11) ‖F‖
2 t−1
2 t

L
2 t−1

t (Ω)
=

(
ˆ

Ω

|F | 2 t−1
t dy

) 1
2

=

(
ˆ

Ω

|∇ϕ|2 |∇uq|p−2 dy

) 1
2

.

We notice that in view of the choice of t, we have

2 t− 1

t
= 2− 1

t
= 2

(
1− p− 2

2 p− 3

)
=

2 p− 2

2 p− 3
> 1.

We also introduce the exponent 0 < Θ < N given by
(
N − 1− γ

2 t

) 2 t

2 t− 1
= N −Θ that is Θ = N −

(
N − 1− γ

2 t

) 2 t

2 t− 1
.

Thanks to the choices of γ and t, it is not difficult to see that Θ is positive. More precisely, observe that
this exponent is explicitly given by

Θ =
t− 1

2 t− 1
=

1

2 (p− 1)
.

In view of these definitions, we can rewrite (2.10) as

(2.12) |ϕ(x)| ≤ C S 1
2 t

(
ˆ

Ω

|F (y)|
|x− y|N−Θ

dy

) 2 t−1
2 t

,

so that one can recognize a suitable Riesz potential on the right-hand side. We then recall the classical
potential estimate (see for example [18, Lemma 7.12])

(2.13)

∥∥∥∥
ˆ

Ω

|F (y)|
| · −y|N−Θ

dy

∥∥∥∥
Lm(Ω)

≤




1− δ
Θ

N
− δ




1−δ

ω
N−Θ

N

N |Ω| ΘN −δ ‖F‖Ls(Ω),

where

0 ≤ δ :=
1

s
− 1

m
<

Θ

N
.

We are now ready to finalize the proof of the weighted Sobolev inequality: we choose 2 < σ < σ0, where σ0
is given by (2.8). Through some lengthy yet elementary computations, we see that this choice guarantees
that we have

σ − 2

σ

t

2 t− 1
<

Θ

N
.
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We then take the Lσ(Ω) norm in (2.12), so to get

‖ϕ‖Lσ(Ω) ≤ C S 1
2 t

∥∥∥∥∥

(
ˆ

Ω

|F (y)|
| · −y|N−Θ

dy

) 2 t−1
2 t

∥∥∥∥∥
Lσ(Ω)

= C S 1
2 t

∥∥∥∥
ˆ

Ω

|F (y)|
| · −y|N−Θ

dy

∥∥∥∥

2 t−1
2 t

Lσ
2 t−1
2 t (Ω)

.

The last term can be estimated from above by using (2.13) with the choices

m = σ
2 t− 1

2 t
and s =

2 t− 1

t
.

These are feasible, since

δ =
1

s
− 1

m
=

t

2 t− 1
− 2 t

σ (2 t− 1)
=
σ − 2

σ

t

2 t− 1
,

is positive and smaller than Θ/N , thanks to the choice of σ. We then obtain

‖ϕ‖Lσ(Ω) ≤ C S 1
2 t







1− δ
Θ

N
− δ




1−δ

ω
N−Θ

N

N |Ω| ΘN −δ




2 t−1
2 t

‖F‖
2 t−1
2 t

L
2 t−1

t (Ω)
.

By recalling (2.11), we thus obtained

√
T ‖ϕ‖Lσ(Ω) ≤

(
ˆ

Ω

|∇uq|p−2 |∇ϕ|2 dx
) 1

2

,

with the constant T given by

T =
1

C2 S 1
t







1− δ

Θ

N
− δ




1−δ

ω
N−Θ

N

N |Ω| ΘN −δ




1−2 t
t

.

By recalling that C = C(N) > 0, that S = S(α,N, p, q0,Ω, r, γ) > 0, that r = t (p− 2), that Θ and t depend
on p only, that γ depends on N and p and that (finally!) δ only depends on σ (which is fixed) and on t
(which depends only on p, as already said), we get the desired claim about the quality of the constant T .
We further observe that

σ → σ0 =⇒ δ → Θ

N
,

which shows that T goes to 0, as σ approaches σ0.

Finally, we prove the last statement. Let us take ϕ ∈ W 1,p
0 (Ω). By definition, there exists a sequence

{ϕn}n∈N ⊂ C∞
0 (Ω) such that

lim
n→∞

[
‖ϕn − ϕ‖Lp(Ω) + ‖∇ϕn −∇ϕ‖Lp(Ω)

]
= 0.

We first observe that

ˆ

Ω

|∇u|p−2 |∇ϕ|2 dx ≤
(
ˆ

Ω

|∇u|p dx
) p−2

p

‖∇ϕ‖2Lp(Ω) < +∞,
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thanks to Hölder’s inequality. We then have
∣∣∣∣∣

ˆ

Ω

|∇u|p−2 |∇ϕn|2 dx −
ˆ

Ω

|∇u|p−2 |∇ϕ|2 dx
∣∣∣∣∣

≤
(
ˆ

Ω

|∇u|p dx
) p−2

p
(
ˆ

Ω

∣∣∣|∇ϕn|2 − |∇ϕ|2
∣∣∣
p
2

dx

) 2
p

=

(
ˆ

Ω

|∇u|p dx
) p−2

p
(
ˆ

Ω

∣∣∣|∇ϕn| − |∇ϕ|
∣∣∣
p
2
∣∣∣|∇ϕn|+ |∇ϕ|

∣∣∣
p
2

dx

) 2
p

≤
(
ˆ

Ω

|∇u|p dx
) p−2

p
(
ˆ

Ω

∣∣∣|∇ϕn|+ |∇ϕ|
∣∣∣
p

dx

) 1
p

×
(
ˆ

Ω

∣∣∣|∇ϕn| − |∇ϕ|
∣∣∣
p

dx

) 1
p

.

This shows that

lim
n→∞

ˆ

Ω

|∇u|p−2 |∇ϕn|2 dx =

ˆ

Ω

|∇u|p−2 |∇ϕ|2 dx.

On the other hand, by using that ϕn converges to ϕ almost everywhere (up to a subsequence), we can apply
Fatou’s Lemma and get

lim inf
n→∞

ˆ

Ω

|ϕn|σ dx ≥
ˆ

Ω

|ϕ|σ dx.

By using (2.9) for ϕn, taking the limit as n goes to ∞ and using the last two equations in display, we get
that (2.9) holds for ϕ, as well. �

Corollary 2.8. Let 2 < p < q0 < p∗ and let Ω ⊂ R
N be an open bounded connected set, with boundary of

class C1,α, for some 0 < α < 1. For every p ≤ q ≤ q0, let uq ∈ W 1,p
0 (Ω) be a positive minimizer of (1.1).

Then there exists an exponent θ = θ(p) ∈ (1, 2) and a constant C = (N, p, q0, α,Ω) > 0 such that

‖ϕ‖W 1,θ(Ω) ≤ C

(
ˆ

Ω

|∇uq|p−2 |∇ϕ|2 dx
) 1

2

, for every ϕ ∈W 1,p
0 (Ω), q ∈ [p, q0].

Proof. We take 1 < θ < (2 p− 2)/(2 p− 3). Then Hölder’s inequality with conjugate exponents

2/θ and 2/(2− θ),

implies

(
ˆ

Ω

|∇ϕ|θ dx
) 1

θ

≤
(
ˆ

Ω

|∇uq|p−2 |∇ϕ|2 dx
) 1

2

(
ˆ

Ω

1

|∇uq|
θ

2−θ
(p−2)

dx

) 2−θ
2 θ

≤ S̃ 2−θ
2θ

(
ˆ

Ω

|∇uq|p−2 |∇ϕ|2 dx
) 1

2

,

where we have used that
θ

2− θ
(p− 2) < (p− 1),

which allows us to use estimate (C.14) from Theorem C.5, with r = (p− 2) θ/(2 − θ). Since Ω is bounded,

by Hölder’s inequality we have that W 1,p
0 (Ω) ⊂ W 1,θ

0 (Ω), with continuous inclusion. Moreover, by Poincaré
inequality

‖∇ϕ‖Lθ(Ω) and ‖ϕ‖W 1,θ(Ω),

are equivalent norms on W 1,θ
0 (Ω). These facts conclude the proof. �



16 BRASCO AND LINDGREN

A consequence of Theorem 2.7 and Corollary 2.8 is the following compactness result with “varying
weights”. This naturally comes into play when linearizing the equation (1.2), as explained in the Intro-
duction.

Corollary 2.9 (Uniform compact embedding). Let 2 < p < q0 < p∗ and let Ω ⊂ R
N be an open bounded

connected set, with boundary of class C1,α, for some 0 < α < 1. We take a sequence {qn}n∈N ⊂ [p, q0] and

consider accordingly un ∈ W 1,p
0 (Ω) a positive minimizer of (1.1) with q = qn. If {φn}n∈N ⊂ W 1,p

0 (Ω) is a

sequence of functions satisfying
ˆ

Ω

|∇un|p−2 |∇φn|2 dx ≤ C, for every n ∈ N,

then {φn}n∈N converges strongly in L2(Ω) and weakly in W 1,θ
0 (Ω), up to a subsequence. Here θ is the same

exponent as in Corollary 2.8.

Proof. The assumption, in conjunction with Corollary 2.8, entails that {φn}n∈N is a bounded sequence

in W 1,θ
0 (Ω). By the classical Rellich-Kondrašov Theorem, we get that this sequence converges weakly in

W 1,θ(Ω) and strongly in Lθ(Ω), up to a subsequence. Moreover, since W 1,θ
0 (Ω) is also weakly closed, we get

that the limit still belongs to W 1,θ
0 (Ω).

In order to get the strong L2 convergence, we observe that, if we denote by σ0 the exponent of Theorem
2.7, for every 2 < σ < σ0 and n,m ∈ N we have

‖φn − φm‖L2(Ω) ≤ ‖φn − φm‖1−τ
Lσ(Ω) ‖φn − φm‖τLθ(Ω)

≤
(
‖φn‖Lσ(Ω) + ‖φm‖Lσ(Ω)

)1−τ

‖φn − φm‖τLθ(Ω)

≤
(
1

T

) 1−τ
2

((
ˆ

Ω

|∇un|p−2 |∇φn|2 dx
) 1

2

+

(
ˆ

Ω

|∇um|p−2 |∇φm|2 dx
) 1

2

)1−τ

× ‖φn − φm‖τLθ(Ω)

≤
(
4C

T

) 1−τ
2

‖φn − φm‖τLθ(Ω).

We used interpolation in Lebesgue spaces and the uniform weighted Sobolev inequality of Theorem 2.7,
applied to φn, φm ∈W 1,p

0 (Ω). The above estimate and the strong convergence in Lθ(Ω) show that {φn}n∈N

is a Cauchy sequence in L2(Ω) and thus it strongly converges. By uniqueness of the limit, we conclude. �

3. A weighted linear eigenvalue problem

In this section, we treat a weighted linear eigenvalue problem, that naturally arises when linearizing the
quasilinear equation (1.2). This is decisive in the proof of our main result.

It is convenient to introduce the notation

H(z) =
1

p
|z|p, for every z ∈ R

N .

Then we observe that

∇H(z) = |z|p−2 z, for every z ∈ R
N ,

and

(3.1) D2H(z) = |z|p−2 Id + (p− 2) |z|p−4 z ⊗ z, for every z ∈ R
N .

In particular, we have the following facts for p > 2

(3.2) D2H(z) z = (p− 1) |z|p−2 z, |z|p−2 |ξ|2 ≤ 〈D2H(z) ξ, ξ〉 ≤ (p− 1) |z|p−2 |ξ|2, for z, ξ ∈ R
N .

We will repeatedly use the following elementary inequality.
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Lemma 3.1. Let 2 < p <∞ and let Ω ⊂ R
N be an open set. For every v, w, ϕ ∈ W 1,1

loc (Ω), we have

∣∣〈D2H(∇ϕ)∇v,∇v〉 − 〈D2H(∇ϕ)∇w,∇w〉
∣∣ ≤ (p− 1) |∇ϕ|p−2 |∇v −∇w|

(
|∇v|+ |∇w|

)
, a. e. on Ω.

Proof. By Lemma A.2, we have
∣∣〈D2H(∇ϕ)∇v,∇v〉 − 〈D2H(∇ϕ)∇w,∇w〉

∣∣ ≤ |D2H(∇ϕ) (∇v −∇w)|
(
|∇v|+ |∇w|

)
.

By using that the Hessian matrix is given by (3.1), we get

|D2H(∇ϕ) (∇v −∇w)| ≤ (p− 1) |∇ϕ|p−2 |∇v −∇w|.
By using this inequality in the first estimate, we conclude the proof. �

Proposition 3.2. Let 2 < p < ∞ and let Ω ⊂ R
N be an open connected set with finite volume. Let

u ∈ W 1,p
0 (Ω) be the unique positive extremal of

(3.3) λp(Ω) = min
ϕ∈W 1,p

0 (Ω)

{
ˆ

Ω

|∇ϕ|p dx :

ˆ

Ω

|ϕ|p = 1

}
.

By setting

λ(Ω;u) = inf
ϕ∈C∞

0 (Ω)

{
ˆ

Ω

〈D2H(∇u)∇ϕ,∇ϕ〉 dx :

ˆ

Ω

up−2 |ϕ|2 dx = 1

}
,

we have

λ(Ω;u) = (p− 1)λp(Ω).

Proof. The inequality

(3.4) λ(Ω;u) ≤ (p− 1)λp(Ω),

is straightforward. Indeed, for every ε > 0, we take a non-negative uε ∈ C∞
0 (Ω) such that

ˆ

Ω

|∇uε|p dx < λp(Ω) + ε and

ˆ

Ω

upε dx = 1.

For such a function, we have

lim
ε→0

ˆ

Ω

|∇uε −∇u|p dx = 0,

and thus in particular we have convergence in Lp(Ω), as well. We wish to use the function

ũε :=
uε

(
ˆ

Ω

up−2 u2ε dx

) 1
2

,

as a competitor in the problem defining λ(Ω;u). At this aim, it is not difficult to see that

(3.5) lim
ε→0

ˆ

Ω

up−2 ũ2ε dx =

ˆ

Ω

up dx = 1.

We can also prove that

(3.6) lim
ε→0

ˆ

Ω

〈D2H(∇u)∇uε,∇uε〉 dx =

ˆ

Ω

〈D2H(∇u)∇u,∇u〉 dx.

Indeed, by applying Lemma 3.1, we get
∣∣∣∣∣

ˆ

Ω

〈D2H(∇u)∇uε,∇uε〉 dx −
ˆ

Ω

〈D2H(∇u)∇u,∇u〉 dx
∣∣∣∣∣

≤ (p− 1)

ˆ

Ω

|∇u|p−2 |∇uε −∇u|
(
|∇uε|+ |∇u|

)
dx.

Then (3.6) follows by using Hölder’s inequality.
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By using the function ũε, taking the limit as ε go to 0, using (3.5) and (3.6) and finally recalling that
thanks to (3.2) we have

〈D2H(z) z, z〉 = (p− 1) |z|p, for every z ∈ R
N ,

we get
λ(Ω;u) ≤ (p− 1)λp(Ω).

Thus (3.4) is established.

For the converse inequality, we first recall that u satisfies

(3.7)

ˆ

Ω

〈|∇u|p−2 ∇u,∇ϕ〉 dx = λp(Ω)

ˆ

Ω

up−1 ϕdx, for every ϕ ∈W 1,p
0 (Ω),

by minimality. By using (3.2), this can be also rewritten as

(3.8)

ˆ

Ω

〈D2H(∇u)∇u,∇ϕ〉 dx = (p− 1)λp(Ω)

ˆ

Ω

up−1 ϕdx, for every ϕ ∈ W 1,p
0 (Ω).

We take ε > 0 and ϕε ∈ C∞
0 (Ω) such that

ˆ

Ω

〈D2H(∇u)∇ϕε,∇ϕε〉 dx < λ(Ω;u) + ε and

ˆ

Ω

up−2 ϕ2
ε dx = 1.

Then we insert the test function3 ϕ2
ε/u in the equation (3.8), so to get

(p− 1)λp(Ω)

ˆ

Ω

up−1 ϕ
2
ε

u
dx =

ˆ

Ω

〈
D2H(∇u)∇u,∇

(
ϕ2
ε

u

)〉
dx.(3.9)

We now use Picone’s identity of Lemma A.1 with the choice A = D2H(∇u). This gives
〈
D2H(∇u)∇u,∇

(
ϕ2
ε

u

)〉
= 〈D2H(∇u)∇ϕε,∇ϕε〉

−
〈
D2H(∇u)

(
ϕε

∇u
u

−∇ϕε

)
,

(
ϕε

∇u
u

−∇ϕε

)〉
.

By integrating over Ω and using the resulting identity in (3.9), we get

(p− 1)λp(Ω)

ˆ

Ω

up−2 ϕ2
ε dx =

ˆ

Ω

〈D2H(∇u)∇ϕε,∇ϕε〉 dx

−
ˆ

Ω

〈
D2H(∇u)

(
ϕε

∇u
u

−∇ϕε

)
,

(
ϕε

∇u
u

−∇ϕε

)〉
dx

≤ λ(Ω;u) + ε,

thanks to the fact that D2H(∇u) is positive semidefinite. By recalling that
ˆ

Ω

up−2 ϕ2
ε dx = 1,

and using the arbitrariness of ε > 0, we finally get the desired conclusion. �

Definition 3.3. For p > 2, with the notations of Proposition 3.2, we define the weighted Sobolev space

X1,2(Ω; |∇u|p−2) :=

{
ϕ ∈W 1,1

loc (Ω) ∩ L2(Ω) :

ˆ

Ω

|∇u|p−2 |∇ϕ|2 dx < +∞
}
,

endowed with the natural norm

‖ϕ‖X1,2(Ω;|∇u|p−2) = ‖ϕ‖L2(Ω) +

(
ˆ

Ω

|∇u|p−2 |∇ϕ|2 dx
) 1

2

.

3This is admissible, since ϕ is compactly supported in Ω, while by the minimum principle u is bounded away from zero on
every Ω′ ⋐ Ω.
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Accordingly, we set X1,2
0 (Ω; |∇u|p−2) for the completion of C∞

0 (Ω) with respect to this norm, as in [9] (see
also [35]).

Lemma 3.4. Let p > 2 and let Ω ⊂ R
N be an open bounded connected set, with C1,α boundary, for some

0 < α < 1. With the notations of Proposition 3.2, we have

X1,2(Ω; |∇u|p−2) =

{
ϕ ∈W 1,1(Ω) ∩ L2(Ω) :

ˆ

Ω

|∇u|p−2 |∇ϕ|2 dx < +∞
}
.

Moreover, we also have

W 1,p
0 (Ω) ⊂ X1,2

0 (Ω; |∇u|p−2) ⊂W 1,1
0 (Ω),

with continuous inclusions. Finally,

X1,2
0 (Ω; |∇u|p−2) ⊂ X1,2(Ω; |∇u|p−2).

Proof. In order to prove the first fact, it is sufficient to prove that every ϕ ∈ X1,2(Ω; |∇u|p−2) belongs to
W 1,1(Ω), as well. This can be done similarly as in the proof of Corollary 2.8: for every Ω′ ⋐ Ω, we have by
Hölder’s inequality

ˆ

Ω′

|∇ϕ| dx ≤
(
ˆ

Ω

|∇u|p−2 |∇ϕ|2 dx
) 1

2
(
ˆ

Ω

1

|∇u|p−2
dx

) 1
2

,

and observe that the last integrals are finite, thanks to the definition of X1,2(Ω; |∇u|p−2) and to Theorem
C.5. Since Ω′ ⋐ Ω is arbitrary, this shows that ϕ ∈ W 1,1(Ω), as desired.

Let us now come to the second statement. It is sufficient to prove that there exist two constants C1, C2 > 0
such that

C1 ‖ϕ‖W 1,1(Ω) ≤ ‖ϕ‖X1,2(Ω;|∇u|p−2) ≤ C2 ‖ϕ‖W 1,p(Ω), for every ϕ ∈ C∞
0 (Ω).

The estimate on the left-hand side follows from the first part of the proof and the fact that

‖ϕ‖L1(Ω) ≤ |Ω| 12 ‖ϕ‖L2(Ω) ≤ |Ω| 12 ‖ϕ‖X1,2(Ω;|∇u|p−2).

The second one follows from Hölder’s inequality, which permits to infer that

‖ϕ‖X1,2(Ω;|∇u|p−2) = ‖ϕ‖L2(Ω) +

(
ˆ

Ω

|∇u|p−2 |∇ϕ|2 dx
) 1

2

≤ |Ω| 12− 1
p ‖ϕ‖Lp(Ω) +

(
ˆ

Ω

|∇u|p dx
) p−2

2 p

‖∇ϕ‖Lp(Ω).

Finally, as for the last statement: observe that every {ϕn}n∈N ⊂ C∞
0 (Ω) which is a Cauchy sequence with

respect to the norm of X1,2(Ω; |∇u|p−2) is a Cauchy sequence in the Banach spaces W 1,1
0 (Ω) and L2(Ω), as

well. Thus it converges in these spaces to a function

ϕ ∈ W 1,1
0 (Ω) ∩ L2(Ω).

Moreover, by using the strong L1 convergence of the gradients and the fact that ∇u ∈ L∞(Ω) by Theorem
2.5, we have for every k ∈ N

ˆ

{|∇ϕ|≤k}

|∇u|p−2 |∇ϕ|2 dx =

ˆ

{|∇ϕ|≤k}

|∇u|p−2 |∇ϕ|2 dx

+ 2 lim
n→∞

ˆ

{|∇ϕ|≤k}

|∇u|p−2 〈∇ϕ,∇ϕn −∇ϕ〉 dx

≤ lim inf
n→∞

ˆ

{|∇ϕ|≤k}

|∇u|p−2 |∇ϕn|2 dx

≤ lim inf
n→∞

ˆ

Ω

|∇u|p−2 |∇ϕn|2 dx ≤ C.
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By taking the limit as k goes to ∞, this finally proves that ϕ ∈ X1,2(Ω; |∇u|p−2). This is enough to conclude
the proof. �

We can now characterize the extremals for the variational problem which defines λ(Ω;u). The same result
is also contained in [35, Proposition 4.4]. We point out that the proof in [35] is different and it uses a slightly
stronger assumption on the open set.

Proposition 3.5. Let 2 < p < ∞ and let Ω ⊂ R
N be an open bounded connected set, with C1,α boundary,

for some 0 < α < 1. With the notations of Proposition 3.2, the infimum λ(Ω;u) is uniquely attained on the

space X1,2
0 (Ω; |∇u|p−2) by the functions u or −u.

Proof. We first notice that if v ∈ X1,2
0 (Ω; |∇u|p−2) and {vn}n∈N ⊂ C∞

0 (Ω) is such that

lim
n→∞

‖vn − v‖X1,2(Ω;|∇u|p−2) = 0,

then

(3.10) lim
n→∞

ˆ

Ω

〈D2H(∇u)∇vn,∇vn〉 dx =

ˆ

Ω

〈D2H(∇u)∇v,∇v〉 dx.

Indeed, by Lemma 3.1
∣∣〈D2H(∇u)∇vn,∇vn〉 − 〈D2H(∇u)∇v,∇v〉

∣∣ ≤ (p− 1) |∇u|p−2 |∇vn −∇v| |
(
|∇vn|+ |∇v|

)
.

By integrating over Ω and using Hölder’s inequality, we have∣∣∣∣∣

ˆ

Ω

〈D2H(∇u)∇vn,∇vn〉 dx−
ˆ

Ω

〈D2H(∇u)∇v,∇v〉 dx
∣∣∣∣∣

≤ C

ˆ

Ω

|∇u|p−2 |∇vn −∇v|
(
|∇vn|+ |∇v|

)
dx

≤ C

(
ˆ

Ω

|∇u|p−2 |∇vn −∇v|2 dx
) 1

2

×
(
ˆ

Ω

|∇u|p−2
(
|∇vn|+ |∇v|

)2
dx

) 1
2

.

By observing that the last term converges to 0, we get (3.10). Similarly, by using that u ∈ L∞(Ω), we get
that

lim
n→∞

ˆ

Ω

up−2 |vn|2 dx =

ˆ

Ω

up−2 |v|2 dx.

Since C∞
0 (Ω) is dense in X1,2

0 (Ω; |∇u|p−2) by definition, the previous computations show that

λ(Ω;u) = inf
ϕ∈X1,2

0 (Ω;|∇u|p−2)

{
ˆ

Ω

〈D2H(∇u)∇ϕ,∇ϕ〉 dx :

ˆ

Ω

up−2 |ϕ|2 dx = 1

}
.

In order to prove that u or −u attain the infimum, it is sufficient to use (3.2). This entails that
ˆ

Ω

〈D2H(∇u)∇u,∇u〉 dx = (p− 1)

ˆ

Ω

|∇u|p dx = (p− 1)λp(Ω) = λ(Ω;u),

where the last equality is the content of Proposition 3.2. By further observing that u ∈ W 1,p
0 (Ω) ⊂

X1,2
0 (Ω; |∇u|p−2) by Lemma 3.4, we get that u and −u are minimizers for the problem defining the value

λ(Ω;u).

In order to prove that any minimizer must coincide either with u or with −u, we assume that there is another
minimizer v ∈ X1,2

0 (Ω; |∇u|p−2). By definition, there exists a sequence {vn}n∈N ⊂ C∞
0 (Ω) such that

lim
n→∞

[
ˆ

Ω

|∇u|p−2 |∇vn −∇v|2 dx +

ˆ

Ω

|vn − v|2 dx
]
= 0.
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We recall that u satisfies (3.8). For every n ∈ N, the choice ϕ = v2n/u is feasible in (3.8) and it yields

λ(Ω;u)

ˆ

Ω

up−2 v2n dx =

ˆ

Ω

〈
D2H(∇u)∇u,∇

(
v2n
u

)〉
dx

=

ˆ

Ω

〈D2H(∇u)∇vn,∇vn〉 dx

−
ˆ

Ω

〈
D2H(∇u)

(
vn

∇u
u

−∇vn
)
,

(
vn

∇u
u

−∇vn
)〉

dx,

(3.11)

where in the second equality we used the general version of the Picone identity given by Lemma A.1, with
the positive semidefinite matrix A = D2H(∇u).

We now wish to pass to the limit as n goes to ∞ in the previous identity. We notice at first that

lim
n→∞

ˆ

Ω

up−2 v2n dx =

ˆ

Ω

up−2 v2 dx = 1,

which follows directly by the choice of {vn}n∈N and the fact that u ∈ L∞(Ω). As for the first term on the
right-hand side of (3.11), we simply use (3.10).

We are left with handling the last term in (3.11). We have that {(vn,∇vn)}n∈N converges almost every-
where to (v,∇v), possibly up to extracting a subsequence. Observe that we are using that |∇u| 6= 0 almost
everywhere in Ω, thanks to (C.14). By observing that D2H(∇u) is positive semidefinite, an application of
Fatou’s Lemma yields

lim inf
n→∞

ˆ

Ω

〈
D2H(∇u)

(
vn

∇u
u

−∇vn
)
,

(
v
∇u
u

−∇vn
)〉

dx

≥
ˆ

Ω

〈
D2H(∇u)

(
v
∇u
u

−∇v
)
,

(
v
∇u
u

−∇v
)〉

dx.

Thus, by taking the limit as n goes to ∞ in (3.11), we get

λ(Ω;u) +

ˆ

Ω

〈
D2H(∇u)

(
v
∇u
u

−∇v
)
,

(
v
∇u
u

−∇v
)〉

dx ≤ λ(Ω;u).

This entails that we must have

(3.12)

〈
D2H(∇u)

(
v
∇u
u

−∇v
)
,

(
v
∇u
u

−∇v
)〉

= 0, a. e. in Ω.

From the definition of D2H, it is clear that D2H(∇u) is positive definite whenever ∇u does not vanish: as
remarked above, this is true almost everywhere by (C.14). Therefore, from (3.12) we must have

(3.13) v
∇u
u

−∇v = 0, a. e. in Ω.

We now observe that v ∈ W 1,1
0 (Ω) thanks to Lemma 3.4, while by Theorem 2.5 u ∈ C1(Ω) and it has the

following property: for every Ω′ ⋐ Ω, there exists a constant C = C(Ω′) > 0 such that u ≥ 1/C on Ω′. Thus
we have

v

u
∈W 1,1

loc (Ω),

and Leibniz’s rule holds for its distributional gradient. The latter is given by

∇
( v
u

)
=
u∇v − v∇u

u2
, a. e. in Ω,

and thus it identically vanishes almost everywhere in Ω, by virtue of (3.13). Since Ω is connected, this
implies that v/u is constant in Ω. Thus we get that v is proportional to u in Ω. The desired result is now a
consequence of the normalization taken. �
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4. Proofs of the main results

Proof of Theorem 1.1. We divide the proof in three parts, for ease of readability.

Part 1: linearized equation. We argue by contradiction: we suppose that for every q > p, the problem (1.1)
always admits (at least) two distinct positive solutions. We then take a decreasing sequence {qn}n∈N ⊂
(p,+∞) such that

lim
n→∞

qn = p.

Correspondingly, for every n ∈ N there exist two distinct positive solutions un and vn of (1.1). Observe that
they solve

−∆pun = λp,qn(Ω)u
qn−1
n and −∆pvn = λp,qn(Ω) v

qn−1
n , in Ω,

with
ˆ

Ω

uqnn dx =

ˆ

Ω

vqnn dx = 1.

By recalling that q 7→ λp,q(Ω) is continuous, we get

lim
n→∞

λp,qn(Ω) = λp(Ω).

Then, by using the minimality and the uniform convexity of the Lp norm, it is not difficult to see that

lim
n→∞

‖un − u‖W 1,p
0 (Ω) = lim

n→∞
‖vn − u‖W 1,p

0 (Ω) = 0,

where u ∈ W 1,p
0 (Ω) is the unique positive solution of (3.3). In turn, such a convergence can be upgraded to

a convergence in C1(Ω) norm, thanks to the uniform C1,χ estimate of Theorem 2.5.
If we recall the notation

H(z) =
1

p
|z|p,

the equations solved by un and vn can be written in weak form as

(4.1)

ˆ

Ω

〈∇H(∇un),∇ϕ〉 = λp,qn(Ω)

ˆ

Ω

uqn−1
n ϕdx,

and

(4.2)

ˆ

Ω

〈∇H(∇vn),∇ϕ〉 = λp,qn(Ω)

ˆ

Ω

vqn−1
n ϕdx,

for any ϕ ∈ W 1,p
0 (Ω).

We now observe that for every z, w ∈ R
N we have

∇H(z)−∇H(w) =

ˆ 1

0

d

dt

(
∇H(t z + (1− t)w

)
dt

=

(
ˆ 1

0

D2H(t z + (1 − t)w) dt

)
(z − w).

(4.3)

Similarly, for every a, b ≥ 0 we have

aqn−1 − bqn−1 =

ˆ 1

0

d

dt
(t a+ (1 − t) b)qn−1 dt

= (qn − 1)

(
ˆ 1

0

(t a+ (1− t) b)qn−2 dt

)
(a− b).

(4.4)

By subtracting the two equations (4.1) and (4.2), using (4.3) with z = ∇un(x), w = ∇vn(x) and (4.4) with
a = un(x), b = vn(x), we thus get

ˆ

Ω

〈An(x)∇(un − vn),∇ϕ〉 dx = λp,qn(Ω)

ˆ

Ω

wn (un − vn)ϕdx(4.5)
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where

An(x) =

ˆ 1

0

D2H(t∇un(x) + (1− t)∇vn(x)) dt,

and

wn(x) = (qn − 1)

ˆ 1

0

(t un(x) + (1− t) vn(x))
qn−2 dt.

For every n ∈ N, we set

φn =
un − vn

‖un − vn‖L2(Ω)
∈ W 1,p

0 (Ω),

then from (4.5) we get that φn solves the following weighted linear eigenvalue problem

(4.6)

ˆ

Ω

〈An(x)∇φn,∇ϕ〉 dx = λp,qn(Ω)

ˆ

Ω

wn φn ϕdx, for ϕ ∈W 1,p
0 (Ω).

In particular, the choice ϕ = φn in (4.6) yields

(4.7)

ˆ

Ω

〈An ∇φn,∇φn〉 dx = λp,qn(Ω)

ˆ

Ω

wn |φn|2 dx.

Part 2: convergence of φn. We now would like to know that it is possible to pass to the limit in (4.6) and
(4.7). By observing that

(4.8) ‖φn‖L2(Ω) = 1 and λp,qn(Ω) ‖wn‖L∞(Ω) ≤ C,

inequality (4.7) implies
ˆ

Ω

〈An ∇φn,∇φn〉 dx ≤ C.

Observe that the second uniform bound in (4.8) can be inferred from Proposition 2.4, the properties of un, vn
and (2.7). An application of (3.2) and Lemma A.3 yields

〈An ξ, ξ〉 =
ˆ 1

0

〈D2H(t∇un + (1− t)∇vn) ξ, ξ〉 dt

≥
(
ˆ 1

0

|t∇un + (1 − t)∇vn|p−2 dt

)
|ξ|2 ≥ 1

4p−1
(|∇un|+ |∇vn|)p−2 |ξ|2.

(4.9)

Therefore, we obtain

ˆ

Ω

(|∇un|+ |∇vn|)p−2 |∇φn|2 dx ≤ C, for every n ∈ N.

By Corollary 2.9, there exist θ = θ(p) ∈ (1, 2) and φ ∈ L2(Ω)∩W 1,θ
0 (Ω) such that {φn}n∈N converges strongly

in L2(Ω) and weakly in W 1,θ(Ω) to φ, up to a subsequence. In addition, from the C1(Ω) convergence of un
and vn, we have

An → D2H(∇u) and λp,qn(Ω)wn → (p− 1)λp(Ω)u
p−2 uniformly on Ω.

This is enough to pass to the limit in (4.6) and (4.7), as we will now see. Indeed, the convergence of the
right-hand side of (4.6) easily follows from the claimed convergences. As for the left-hand side, we have for
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every ϕ ∈ C∞
0 (Ω)

∣∣∣∣∣

ˆ

Ω

〈An(x)∇φn,∇ϕ〉 dx −
ˆ

Ω

〈D2H(∇u)∇φ,∇ϕ〉 dx
∣∣∣∣∣

≤
∣∣∣∣∣

ˆ

Ω

〈(
An(x)−D2H(∇u)

)
∇φn,∇ϕ

〉
dx

∣∣∣∣∣

+

∣∣∣∣∣

ˆ

Ω

〈D2H(∇u) (∇φn −∇φ),∇ϕ〉 dx
∣∣∣∣∣

≤ ‖An −D2H(∇u)‖L∞(Ω) ‖∇ϕ‖L∞(Ω)

ˆ

Ω

|∇φn| dx

+

∣∣∣∣∣

ˆ

Ω

〈D2H(∇u) (∇φn −∇φ),∇ϕ〉 dx
∣∣∣∣∣.

The first term converges to zero thanks to the uniform convergence of An and the uniform bound on {φn}n∈N

inW 1,θ(Ω). As for the second term, it is sufficient to use that D2H(∇u) ∈ L∞(Ω) and the weak convergence
of the gradients of {φn}n∈N.

We thus obtain that φ satisfies
ˆ

Ω

〈D2H(∇u)∇φ,∇ϕ〉 dx = (p− 1)

ˆ

Ω

up−2 φϕdx, for every ϕ ∈ C∞
0 (Ω).

In order to pass to the limit in (4.7), we observe that4 for every n, k ∈ N
ˆ

Ω

〈An ∇φn,∇φn〉 dx ≥
ˆ

{|∇φ|≤k}

〈An ∇φn,∇φn〉 dx

≥
ˆ

{|∇φ|≤k}

〈An ∇φ,∇φ〉 dx + 2

ˆ

{|∇φ|≤k}

〈An ∇φ,∇φn −∇φ〉 dx.

By using the weak convergence of ∇φn and the fact An ∇φ is uniformly bounded on {|∇φ| ≤ k} for every
fixed k, we get

lim
n→∞

ˆ

{|∇φ|≤k}

〈An ∇φ,∇φn −∇φ〉 dx = 0.

This implies that for every k ∈ N we have

lim inf
n→∞

ˆ

Ω

〈An ∇φn,∇φn〉 dx ≥ lim inf
n→∞

ˆ

{|∇φ|≤k}

〈An ∇φ,∇φ〉 dx

=

ˆ

{|∇φ|≤k}

〈D2H(∇u)∇φ,∇φ〉 dx,

thanks to the uniform convergence of An. We can now take the limit as k goes to ∞ and obtain that the
left-hand side of (4.7) is lower semicontinuous. Thus we obtain

(4.10)

ˆ

Ω

〈D2H(∇u)∇φ,∇φ〉 dx ≤ (p− 1)λp(Ω)

ˆ

Ω

up−2 |φ|2 dx.

Observe that in the right-hand side we used the strong convergence in L2(Ω) of {φn}n∈N. By recalling that

〈D2H(z) ξ, ξ〉 ≥ |z|p−2 |ξ|2, for every z, ξ ∈ R
N ,

4In the second inequality, we use the “above tangent” property

f(z) ≥ f(z0) + 〈∇f(z0), z − z0〉, for every z, z0 ∈ R
N ,

for the convex function f(z) = 〈An z, z〉.
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the estimate (4.10) shows that φ also belongs to the weighted Sobolev space X1,2(Ω; |∇u|p−2) (recall the
Definition 3.3 above). Note also that the strong convergence of φn in L2 together with (4.8) implies that
‖φ‖L2(Ω) = 1, so that φ is non-trivial.

Finally, from the properties above we have

φ ∈ X1,2(Ω; |∇u|p−2) ∩W 1,1
0 (Ω) = X1,2

0 (Ω; |∇u|p−2),

thanks to Lemma B.1.

Part 3: conclusion. From the fact that φ ∈ X1,2
0 (Ω; |∇u|p−2) is nontrivial together with Proposition 3.2,

Proposition 3.5 and (4.10), it follows that φ must be proportional either to u or to −u. In particular, φ does
not change sign: more precisely, it is either strictly negative or strictly positive.

On the other hand, by Lemma 2.2, we know that un − vn must change sign. Accordingly, if φ±n stand for
the positive and negative part of φn respectively, we have that each

Ω±
n = {x ∈ Ωn : φ±n (x) > 0},

has positive measure. Testing equation (4.6) with φ±n , we obtain by using (4.8)

(4.11)

ˆ

Ω

〈An ∇φ±n ,∇φ±n 〉 dx = λp,qn(Ω)

ˆ

Ω

wn |φ±n |2 dx ≤ C

ˆ

Ω

|φ±n |2 dx.

By Hölder’s inequality, Theorem 2.7, equations (4.9) and (4.11) we have for an exponent 2 < σ < σ0
ˆ

Ω

|φ±n |2 dx ≤
(
ˆ

Ω

|φ±n |σdx
) 2

σ

|Ω±
n |

σ−2
σ

≤ 1

T |Ω±
n |

σ−2
σ

ˆ

Ω

|∇un|p−2 |∇φ±n |2 dx

≤ 4p−1

T |Ω±
n |

σ−2
σ

ˆ

Ω

〈An ∇φ±n ,∇φ±n 〉 dx ≤ C
4p−1

T |Ω±
n |

σ−2
σ

ˆ

Ω

|φ±n |2 dx.

This implies

|Ω±
n | ≥

1

C̃
, for every n ∈ N,

for some constant C̃, not depending on n. This contradicts the fact, shown in Part 2, that φn strongly
converges in L2(Ω) to the function φ, the latter being either strictly positive or strictly negative. Such a
contradiction can be obtained by reasoning as in the proof of [16, Theorem 1], for example. The proof is
over. �

Remark 4.1. We have already noticed that the function q 7→ λp,q(Ω) is continuous. Actually, such a
function is C1 on each interval for which λp,q(Ω) is simple, see [15]. In particular, under the standing
assumptions of Theorem 1.1, we get that such a function is C1 on [1, q), where q > p is as in the statement.
We owe this observation to the kind courtesy of G. Ercole.

Proof of Corollary 1.4. Let v ∈ W 1,p
0 (Ω) \ {0} be a critical point of the functional Fq,λ. By definition of

λp,q(Ω), we have

λp,q(Ω) ≤

ˆ

Ω

|∇v|p dx
(
ˆ

Ω

|v|q dx
) p

q

= λ

(
ˆ

Ω

|v|q dx
) q−p

q

,

that is

(4.12)

(
λp,q(Ω)

λ

) q
q−p

≤
ˆ

Ω

|v|q dx.
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Moreover, we obtain that equality holds in (4.12) if and only if v/‖v‖Lq(Ω) is an extremal for (1.1). On the

other hand, if u ∈ W 1,p
0 (Ω) is the unique positive minimizer of (1.1), it is easily seen that

(4.13) U =

(
λ

λp,q(Ω)

) 1
p−q

u,

is a critical point of Fq,λ and equality in (4.12) holds. This finally shows that

(
λp,q(Ω)

λ

) q
q−p

= inf

{
ˆ

Ω

|v|q dx : v ∈W 1,p
0 (Ω) \ {0} is a critical point of Fq,λ

}
,

and such an infimum is uniquely attained at the critical point (4.13). �

Appendix A. Inequalities

In Section 3, we used the following generalization of Picone’s identity for computing the first eigenvalue
of the linearized operator.

Lemma A.1 (Picone–type identity). Let u, v : Ω → R be two differentiable functions, such that u > 0 in Ω.
Let A be an N ×N symmetric matrix with real coefficients. Then we have

(A.1)

〈
A∇u,∇

(
v2

u

)〉
= 〈A∇v,∇v〉 −

〈
A

(
v
∇u
u

−∇v
)
,

(
v
∇u
u

−∇v
)〉

.

In particular, if A is positive semidefinite, we get
〈
A∇u,∇

(
v2

u

)〉
≤ 〈A∇v,∇v〉

Finally, if A is positive definite, equality in the previous estimate holds if and only if

v
∇u
u

= ∇v.

Proof. The proof of (A.1) is by direct computation and is left to the reader. The other facts easily follow
from (A.1) and the additional properties of A. �

Lemma A.2. Let A be an N ×N symmetric matrix with real coefficients. For every z, w ∈ R
N we have

∣∣∣〈Az, z〉 − 〈Aw,w〉
∣∣∣ ≤ |A (z − w)|

(
|z|+ |w|

)
.

Proof. We set zt = (1− t)w + t z for t ∈ [0, 1], then by basic Calculus we have

∣∣∣〈Az, z〉 − 〈Aw,w〉
∣∣∣ =

∣∣∣∣
ˆ 1

0

d

dt
〈Azt, zt〉 dt

∣∣∣∣ = 2

∣∣∣∣
ˆ 1

0

〈A (z − w), zt〉 dt
∣∣∣∣

≤ 2 |A (z − w)|
ˆ 1

0

|zt| dt

≤ 2 |A (z − w)|
ˆ 1

0

(
(1− t) |w| + t |z|

)
dt.

By computing the last integral, we get the desired conclusion. �

The next estimate is quite standard, we include the proof for completeness.

Lemma A.3. Let p > 2, then for every z, w ∈ R
N we have

ˆ 1

0

|t z + (1− t)w|p−2 dt ≥ 1

4p−1
(|z|+ |w|)p−2.
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Proof. We first suppose that |z| > |w|, then for every t ≥ 3/4 we have

|t z + (1 − t)w| ≥ t |z| − (1− t) |w| ≥ (2 t− 1) |z|

≥ 1

2
|z| ≥ 1

4
(|z|+ |w|).

Thus in this case, we get
ˆ 1

0

|t z + (1− t)w|p−2 dt ≥
ˆ 1

3
4

|t z + (1− t)w|p−2 dt ≥ 1

4p−1
(|z|+ |w|)p−2.

Similarly, if |w| ≥ |z| and 0 ≤ t ≤ 1/4, we have

|t z + (1− t)w| ≥ (1 − t) |w| − t |z| ≥ (1− 2 t) |w|

≥ 1

2
|w| ≥ 1

4
(|z|+ |w|).

By raising both sides to the power p− 2 and integrating over [0, 1/4], we get the desired conclusion in this
case, as well. �

The following interpolation inequality is well-known (see for example [27, Theorem 12.83]), we focus here
on the dependence of the constant on the exponent q.

Proposition A.4 (Morrey–type inequality). Let p > N and 1 ≤ q <∞. There exists a constant QN,p > 0,
independent of q, such that for every ϕ ∈ C∞

0 (RN ) we have

(A.2) ‖ϕ‖L∞(RN ) ≤ QN,p

(
ˆ

RN

|∇ϕ|p dx
) N

p q−(q−p) N
(
ˆ

RN

|ϕ|q dx
) p−N

p q−(q−p) N

.

Proof. Let us set α = 1−N/p. From the classical Morrey’s inequality, for every x, y ∈ R
N we have

C |ϕ(x) − ϕ(y)| ≤ |x− y|α
(
ˆ

RN

|∇ϕ|p dx
) 1

p

,

for some C = C(N, p) > 0. By using the triangle inequality, we get

C |ϕ(x)| ≤ |x− y|α
(
ˆ

RN

|∇ϕ|p dx
) 1

p

+ C |ϕ(y)|.

For every x ∈ R
N , we integrate the previous inequality with respect to y ∈ B1(x). This yields

(A.3) C ωN |ϕ(x)| ≤
ˆ

B1(x)

|x− y|α dy
(
ˆ

RN

|∇ϕ|p dx
) 1

p

+ C

ˆ

B1(x)

|ϕ(y)| dy.

We observe that
ˆ

B1(x)

|x− y|α dy =
N ωN

N + α
,

while by using Hölder’s inequality5

ˆ

B1(x)

|ϕ(y)| dy ≤ |B1(x)|1−
1
q

(
ˆ

B1(x)

|ϕ(y)|q dy
) 1

q

≤ ω
q−1
q

N

(
ˆ

RN

|ϕ(y)|q dy
) 1

q

.

By using these facts in (A.3), we finally get

|ϕ(x)| ≤ 1

C

N

N + α

(
ˆ

RN

|∇ϕ|p dx
) 1

p

+ ω
− 1

q

N

(
ˆ

RN

|ϕ|q dx
) 1

q

.

5For q = 1 this is not needed.
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By arbitrariness of x ∈ R
N , this proves

‖ϕ‖L∞(RN ) ≤
1

C

N

N + α

(
ˆ

RN

|∇ϕ|p dx
) 1

p

+ ω
− 1

q

N

(
ˆ

RN

|ϕ|q dx
) 1

q

.

Observe that the function q 7→ ω
−1/q
N is continuous and monotone. Thus, we can infer that

ω
− 1

q

N ≤ max

{
1

ωN
, 1

}
, for every 1 ≤ q < +∞,

so to obtain

(A.4) ‖ϕ‖L∞(RN ) ≤ C̃

(
ˆ

RN

|∇ϕ|p dx
) 1

p

+ C̃

(
ˆ

RN

|ϕ|q dx
) 1

q

,

with C̃ = C̃(N, p) > 0.
The conclusion now is standard. We take ϕ ∈ C∞

0 (RN ) and apply (A.4) to the function ϕt(x) = ϕ(t x),
where t > 0. By observing that

‖ϕt‖L∞(RN ) = ‖ϕ‖L∞(RN ),

and making the change of variables t x = y, we thus obtain

‖ϕ‖L∞(RN ) ≤ C̃ t1−
N
p

(
ˆ

RN

|∇ϕ|p dy
) 1

p

+ C̃ t−
N
q

(
ˆ

RN

|ϕ|q dy
) 1

q

,

which holds for every t > 0. In particular, we obtain

‖ϕ‖L∞(RN ) ≤ C̃ inf
t>0

[
t1−

N
p

(
ˆ

RN

|∇ϕ|p dy
) 1

p

+ t−
N
p

(
ˆ

RN

|ϕ|p dy
) 1

p

]
.

For p > N , it is easily seen that the function

h(t) = t1−
N
p A+ t−

N
q B, for t > 0,

is minimal for

t =

(
B

A

p

p−N

N

q

) 1

1−N
p

+N
q
.

By using this fact with

A =

(
ˆ

RN

|∇ϕ|p dy
) 1

p

and B =

(
ˆ

RN

|ϕ|q dy
) 1

q

,

and computing the minimum above, we finally get the desired estimate (A.2) with

QN,p,q = C̃

(
1 +

p

p−N

N

q

) (
p

p−N

N

q

)−N
q

1

1−N
p

+N
q
.

Finally, if we observe that the function

a 7→
(

p

p−N
a

)− a

1− N
p

+a

,

is bounded for 0 < a ≤ N , we easily get (A.2) with a constant independent of q. �
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Appendix B. A completion space

In what follows, we keep on using the notation of Section 3. If Ω ⊂ R
N is an open bounded connected

set, with C1,α boundary, for some 0 < α < 1, for every δ ≪ 1 we set

Ωδ = {x ∈ Ω : dist(x, ∂Ω) ≤ δ}.
Let p > 2, we still denote u ∈W 1,p

0 (Ω) the unique positive extremal of

λp(Ω) = min
ϕ∈W 1,p

0 (Ω)

{
ˆ

Ω

|∇ϕ|p dx :

ˆ

Ω

|ϕ|p = 1

}
,

and recall that by Lemma 3.4

X1,2(Ω; |∇u|p−2) :=

{
ϕ ∈W 1,1(Ω) ∩ L2(Ω) :

ˆ

Ω

|∇u|p−2 |∇ϕ|2 dx < +∞
}
.

By X1,2
0 (Ω; |∇u|p−2) we still indicate the completion of C∞

0 (Ω) with respect to the norm

‖ϕ‖X1,2(Ω;|∇u|p−2) = ‖ϕ‖L2(Ω) +

(
ˆ

Ω

|∇u|p−2 |∇ϕ|2 dx
) 1

2

.

Lemma B.1. Let Ω ⊂ R
N be an open bounded connected set, with C1,α boundary, for some 0 < α < 1.

There exists δ > 0 such that we have the continuous inclusion

X1,2(Ω; |∇u|p−2) ⊂W 1,2(Ωδ).

Moreover, we also have

X1,2(Ω; |∇u|p−2) ∩W 1,1
0 (Ω) = X1,2

0 (Ω; |∇u|p−2).

Proof. The first statement easily follows from Theorem 2.5. Indeed, we have existence of δ > 0 and µ0 > 0
such that

|∇u| ≥ µ0, in Ωδ.

This entails that
ˆ

Ωδ

|∇ϕ|2 dx ≤ µ2−p
0

ˆ

Ω

|∇u|p−2 |∇ϕ|2 dx, for every ϕ ∈ X1,2(Ω; |∇u|p−2),

which proves the desired inclusion.

In order to characterize the space X1,2
0 (Ω; |∇u|p−2), we first observe that

X1,2(Ω; |∇u|p−2) ∩W 1,1
0 (Ω) ⊃ X1,2

0 (Ω; |∇u|p−2) ∩W 1,1
0 (Ω) = X1,2

0 (Ω; |∇u|p−2),

thanks to Lemma 3.4.
To prove the reverse inclusion, we now assume that ϕ ∈ X1,2(Ω; |∇u|p−2) ∩W 1,1

0 (Ω). We need to show
that there exists a sequence {ϕn}n∈N ⊂ C∞

0 (Ω) such that

lim
n→∞

[
ˆ

Ω

|ϕ− ϕn|2 dx+

ˆ

Ω

|∇u|p−2 |∇ϕ−∇ϕn|2 dx
]
= 0.

By [27, Theorem 18.7], we know that

W 1,1
0 (Ω) =

{
ψ ∈W 1,1(Ω) : Tr∂Ω(ψ) = 0

}
,

where we denote by Tr∂Ω the trace of a function. Thus ϕ has a vanishing trace, as an element of W 1,1(Ω).
On the other hand, from the first part of the proof, we know that ϕ ∈ W 1,2(Ωδ) and observe that we have
a well-defined trace operator Tr∂Ω : W 1,2(Ωδ) → L2(∂Ω), see again [27, Chapter 18]. By uniqueness of the
trace, we thus get that

ϕ ∈
{
ψ ∈W 1,2(Ωδ) : Tr∂Ω(ψ) = 0

}
,
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and the latter coincides with the closure in W 1,2(Ωδ) of functions in C
∞(Ωδ) that vanish in a neighborhood

of ∂Ω, thanks to the usual construction of the trace operator on Lipschitz sets (it is sufficient to adapt the
proof of the aforementioned [27, Theorem 18.7]). Then there exists a sequence {ψn}n∈N ⊂ C∞(Ωδ) such
that

lim
n→∞

‖ψn − ϕ‖W 1,2(Ωδ) = 0,

with each ψn vanishing in a neighborhood of ∂Ω. Moreover, by means of standard convolution techniques,
we can construct a sequence {fn}n∈N ⊂ C∞(Ω) such that

lim
n→∞



ˆ

Ω\Ω δ
4

|ϕ− fn|2 dx
ˆ

Ω\Ω δ
4

|∇u|p−2 |∇ϕ−∇fn|2 dx


 = 0.

We now take two smooth cut-off functions ηδ and ζδ such that

• ηδ ∈ C∞(Ω) and

ηδ ≡ 1 on Ω δ
2
, 0 ≤ ηδ ≤ 1, ηδ ≡ 0 on Ω \ Ωδ;

• ζδ ∈ C∞
0 (Ω) and

ζδ ≡ 1 on Ω \ Ω δ
2
, 0 ≤ ζδ ≤ 1, ζδ ≡ 0 on Ω δ

4
.

Finally, we set

ϕn = ζδ fn + ηδ (1− ζδ)ψn.

Observe that there is no mystery in such a choice: this function has the crucial feature

ζδ + ηδ (1− ζδ) ≡ 1, on Ω,

i.e. ζδ and ηδ (1− ζδ) form a (very simple) partition of unity. This in particular implies

(B.1) ∇ζδ = −∇(ηδ (1− ζδ)), on Ω.

By construction we have ϕn ∈ C∞
0 (Ω) and it is easily seen that

lim
n→∞

ˆ

Ω

|ϕn − ϕ|2 dx = 0.

As for the gradients, we have
ˆ

Ω

|∇u|p−2 |∇ϕn −∇ϕ|2 dx ≤ 2

ˆ

Ω

|∇u|p−2 |∇ζδ fn +∇(ηδ (1− ζδ))ψn|2 dx

+ 2

ˆ

Ω

|∇u|p−2 |ζδ ∇(fn − ϕ) + ηδ (1− ζδ)∇(ψn − ϕ)|2 dx

≤ Cδ

ˆ

Ω δ
2
\Ω δ

4

|∇u|p−2 |fn − ψn|2 dx

+ C

ˆ

Ω\Ω δ
4

|∇u|p−2 |∇(fn − ϕ)|2 dx+ C

ˆ

Ωδ

|∇u|p−2 |∇(ψn − ϕ)|2 dx

where we used (B.1) and the properties of ηδ and ζδ. By recalling the properties of fn and ψn and using
that |∇u| ∈ L∞(Ω), we can obtain

lim
n→∞

ˆ

Ω

|∇u|p−2 |∇ϕn −∇ϕ|2 dx = 0.

This concludes the proof. �
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Appendix C. Uniform negative integrability for the gradient

The goal of this section is to a provide a suitable Riesz–type estimate on some negative powers of |∇uq|
(see Theorem C.5 below), where uq denotes a positive extremal of (1.1). This is the cornerstone on which
Theorem 2.7, Corollary 2.8 and Corollary 2.9 are built. As we have seen, these in turn are crucial tools for
the proof of our main result. The proofs are taken directly from [11], but as explained in the introduction
we need a uniform control of the a priori estimates. Occasionally, we will use the abbreviated notation u in
place of uq, when clear from the context.

C.1. The linearized equation. We first observe that u ∈ C1,χ(Ω) and the critical set

Z :=
{
x ∈ Ω : |∇u| = 0

}
,

is a compact set contained in Ω, thanks to Theorem 2.5. Thus Ω \ Z is an open set. Moreover, on this set
the equation (1.2) is not degenerate, thus by classical Elliptic Regularity we can infer that u ∈ C2(Ω \ Z).
We then take ψ ∈ C∞

0 (Ω \ Z) and test the weak formulation of (1.2) against a partial derivative ψxi
. The

regularity of u on Ω \ Z permits to integrate by parts, so to obtain
ˆ

Ω

〈|∇u|p−2 ∇uxi
,∇ψ〉 dx+ (p− 2)

ˆ

Ω

|∇u|p−4 〈∇u,∇uxi
〉 〈∇u,∇ψ〉 dx

= (q − 1)λp,q

ˆ

Ω

uq−2 uxi
ψ dx, for every ψ ∈ C∞

0 (Ω \ Z).
(C.1)

Here we used the more compact notation λp,q for λp,q(Ω). By density, we can even admit test functions
ψ ∈W 1,2(Ω) with compact support in the open set Ω \ Z in (C.1), thanks to [6, Lemma 9.5].

Remark C.1 (Hessian terms). We seize the opportunity to mention that, since u ∈ L∞(Ω), the right-hand
side of (1.2) is bounded. Then we have

(C.2) |∇u|p−2 ∇u ∈W 1,2
loc (Ω),

thanks to [8, Theorem 2.1] (see also [4, Theorem 1.1] and [19, Theorem 1.2] for some generalizations). In
addition, as noted in [11, Remark 2.3], the weak gradient of |∇u|p−2 ∇u coincides with the classical gradient
in Ω \ Z (where u is in fact smooth), while

∇(|∇u|p−2 ∇u) = 0, a. e. on Z,

since by definition Z coincides with the zero level set of |∇u|p−2 ∇u, thus it is sufficient to use a standard
property of Sobolev functions (see for example [28, Theorem 6.19]). By further observing that |Z| = 0 (by
virtue of [11, Theorem 2.3] or directly from (C.14) below), we can actually say that the weak gradient of
|∇u|p−2 ∇u coincides with the classical gradient almost everywhere in Ω. In light of this discussion, we will
keep on writing the formula

(|∇u|p−2 ∇u)xi
= |∇u|p−2 ∇uxi

+ (p− 2) 〈∇u,∇uxi
〉∇u,

and observe that this expression makes sense almost everywhere on Ω.
The same remarks apply whenever we deal with functions of the form f(|∇u|p−1), where f is a locally

Lipschitz function. Indeed, since u is globally Lipschitz by Theorem 2.5, any function of the form f(|∇u|p−1)

with f locally Lipschitz lies in W 1,2
loc (Ω), thanks to (C.2). This justifies the admissibility of test functions

used in the proof of Proposition C.4 below, as well as the use of the relevant Chain Rule formula.
In the same spirit, we will use the notation D2u for the matrix function defined by

{
0, on Z,

D2u, elsewhere,

and note that this coincides almost everywhere with the classical Hessian.
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C.2. Intermediate estimates. In what follows we will only treat the case N ≥ 3 in detail. The case
N = 2 can be treated with very minor modifications. The proposition below together with Corollary C.3
correspond to [11, Theorem 2.2].

Proposition C.2. Let 2 < p < q0 < p∗ and let Ω ⊂ R
N be an open bounded connected set, with boundary

of class C1,α, for some 0 < α < 1. For every p ≤ q ≤ q0, let u ∈ W 1,p
0 (Ω) be a positive minimizer of (1.1).

Let β ∈ [0, 1) and {
γ < N − 2, if N ≥ 3,
γ ≤ 0, if N = 2.

Then for every i ∈ {1, . . . , N} and every open set E ⋐ Ω we have

|uxi
| p−2−β

2 uxi
∈W 1,2(E).

Moreover, if we set Zi = {y ∈ Ω : uxi
(y) = 0}, we have the estimate

(C.3) sup
x∈Ω

ˆ

E\Zi

|∇u(y)|p−2 |uxi
(y)|−β |∇uxi

(y)|2
|x− y|γ dy ≤ C1,

for some C1 = C1(N, p, q0, α, β, γ,Ω, dist(E, ∂Ω)) > 0.

Proof. Without loss of generality, we prove the result for γ ≥ 0. The heuristic idea is to test the linearized
equation (C.1) with uxi

|uxi
|−β |x − y|−γ φ2, where φ is a smooth cut-off function. In order to do this

rigorously, we fix x ∈ Ω and for 0 < ε < 1 use the test function

ψ(y) = Gε(uxi
(y)) |uxi

(y)|−β
(
|x− y|+ ε

)−γ
φ(y)2,

where φ ∈ C∞
0 (Ω) is such that

φ ≡ 1 on E, 0 ≤ φ ≤ 1, ‖∇φ‖L∞(Ω) ≤
C

dist(E, ∂Ω)
,

and the odd Lipschitz function Gε is given by

Gε(t) = max
{
t− ε, 0

}
, for t ≥ 0, and Gε(t) = −Gε(−t), for t ≤ 0.

The function ψ is a product of a Lipschitz function of uxi
, which vanishes in a neighborhood of the critical

set Z, and a smooth function with compact support in Ω. Therefore ψ is an admissible test function for
(C.1). This gives

ˆ

Ω

|∇u|p−2 |∇uxi
|2 |uxi

|−β

(
|x− y|+ ε

)γ
[
G′

ε(uxi
)− β

Gε(uxi
)

uxi

]
φ2 dy

+ (p− 2)

ˆ

Ω

|∇u|p−4
(
〈∇u,∇uxi

〉
)2 |uxi

|−β

(
|x− y|+ ε

)γ
[
G′

ε(uxi
)− β

Gε(uxi
)

uxi

]
φ2 dy

+ 2

ˆ

Ω

|∇u|p−2 〈∇uxi
,∇φ〉 |uxi

|−β

(
|x− y|+ ε

)γ φGε(uxi
) dy

+ 2 (p− 2)

ˆ

Ω

|∇u|p−4 〈∇u,∇uxi
〉 〈∇u,∇φ〉 |uxi

|−β

(
|x− y|+ ε

)γ φGε(uxi
) dy

+

ˆ

Ω

|∇u|p−2
〈
∇uxi

,∇
(
(|x− y|+ ε)−γ

)〉
Gε(uxi

)|uxi
|−βφ2 dy

+ (p− 2)

ˆ

Ω

|∇u|p−4 〈∇u,∇uxi
〉
〈
∇u,∇

((
|x− y|+ ε

)−γ
)〉

Gε(uxi
) |uxi

|−β φ2 dy

= (q − 1)λp,q

ˆ

Ω

uq−2Gε(uxi
) |uxi

|−β

(
|x− y|+ ε

)γ φ2 dy.
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Note that6

G′
ε(t)− β

Gε(t)

t
≥ 0, for every |t| 6= ε,

therefore, by dropping the second term on the left-hand side and using the Cauchy-Schwarz inequality, we
get

ˆ

Ω

|∇u|p−2|∇uxi
|2|uxi

|−β

(
|x− y

∣∣+ ε
)γ

[
G′

ε(uxi
)− β

Gε(uxi
)

uxi

]
φ2 dy

≤ 2 (p− 1)

ˆ

Ω

|∇u|p−2 |∇uxi
| |uxi

|−β

(
|x− y|+ ε

)γ |Gε(uxi
)|φ |∇φ| dy

+ γ (p− 1)

ˆ

Ω

|∇u|p−2 |∇uxi
| |uxi

|−β

(
|x− y|+ ε

)γ+1 |Gε(uxi
)|φ2 dy

+ (q − 1)λp,q

ˆ

Ω

uq−2 |Gε(uxi
)| |uxi

|−β

(
|x− y|+ ε

)γ φ2 dy =: I1 + I2 + I3.

(C.4)

By using Proposition 2.4, Theorem 2.5, the properties of the cut-off function φ and recalling that λp,q ≤
Λ0 = Λ0(N, p, q0,Ω) (see the proof of Theorem 2.5), the third term can be estimated as

I3 ≤ C

ˆ

Ω

1

|x− y|γ dy,

for a constant depending C on N, p, q0, α, β and Ω, only. In turn, the last integral is easily estimated as
follows

ˆ

Ω

1

|x− y|γ dy ≤
ˆ

{y∈RN : |y−x|≤diam(Ω)}

1

|y − x|γ dy

= N ωN

ˆ diam(Ω)

0

̺N−1−γ d̺ =
N ωN

(N − γ)

(
diam(Ω)

)N−γ

.

(C.5)

In the last integral we used that γ < N , thanks to the stronger assumption γ < N − 2.
As for the terms I1 and I2, we first observe that by using

(C.6) (|x − y|+ ε)γ ≥ (|x− y|+ ε)γ+1

diam(Ω) + 1
, for every x, y ∈ Ω,

we have

I1 + I2 ≤ C

ˆ

Ω

|∇u|p−2 |∇uxi
| |uxi

|−β

(
|x− y|+ ε

)γ+1 |Gε(uxi
)|φ [φ + |∇φ|] dy,

for some C = C(p, γ, diam(Ω)) > 0. Thus, from (C.4), we have obtained

ˆ

Ω

|∇u|p−2 |∇uxi
|2 |uxi

|−β

(
|x− y

∣∣+ ε
)γ

[
G′

ε(uxi
)− β

Gε(uxi
)

uxi

]
φ2 dy

≤ C + C

ˆ

Ω

|∇u|p−2 |∇uxi
| |uxi

|−β

(
|x− y|+ ε

)γ+1 |Gε(uxi
)|φ [φ + |∇φ|] dy.

(C.7)

6Observe that the function is even, thus it is sufficient to check the inequality for t ≥ 0.
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In order to estimate the last integral, we use Young’s inequality. For every δ > 0, we have

C

ˆ

Ω

|∇u|p−2 |∇uxi
| |uxi

|−β

(
|x− y|+ ε

)γ+1 |Gε(uxi
)|φ [φ + |∇φ|] dy

≤ δ

2

ˆ

Ω

|∇u|p−2 |∇uxi
|2 |uxi

|−β

(
|x− y|+ ε

)γ
|Gε(uxi

)|
|uxi

| φ2 dy

+
C2

2 δ

ˆ

Ω

|∇u|p−2 |uxi
|1−β

(
|x− y|+ ε

)γ+2 |Gε(uxi
)| [φ + |∇φ|]2 dy.

(C.8)

We make the choice δ = 1− β, which is feasible since β < 1. Then observe that

(1− β)
|Gε(t)|
|t| ≤ G′

ε(t)− β
Gε(t)

t
, for every |t| 6= ε.

Then the first term in the right-hand side of (C.8) can now be estimated by

1

2

ˆ

Ω

|∇u|p−2 |∇uxi
|2 |uxi

|−β

(
|x− y|+ ε

)γ
[
G′

ε(uxi
)− β

Gε(uxi
)

uxi

]
φ2 dy,

which can be absorbed into the right-hand side of (C.7). Thus, up to now, we obtained
ˆ

Ω

|∇u|p−2 |∇uxi
|2 |uxi

|−β

(
|x− y

∣∣+ ε
)γ

[
G′

ε(uxi
)− β

Gε(uxi
)

uxi

]
φ2 dy

≤ C + C

ˆ

Ω

|∇u|p−2 |uxi
|1−β

(
|x− y|+ ε

)γ+2 |Gε(uxi
)| [φ+ |∇φ|]2 dy,

(C.9)

possibly for a different constant C, independent of x ∈ Ω, ε ∈ (0, 1) and q ∈ [p, q0]. Using that |Gε(t)| ≤ |t|,
together with the Lipschitz bound of Theorem 2.5 and the properties of φ, the last integral of (C.9) can be
estimated by

ˆ

Ω

|∇u|p−2 |uxi
|2−β

(
|x− y|+ ε

)γ+2 [φ+ |∇φ|]2 dy ≤ C

ˆ

Ω

1

|x− y|γ+2
dy,

and the last integral is uniformly (in x ∈ Ω) bounded by a constant depending only on N and diam(Ω),
exactly as in (C.5) (here we crucially use that γ < N − 2).

From (C.9) and using that φ ≡ 1 on E, we thus finally obtain

(C.10)

ˆ

E

|∇u|p−2 |uxi
|−β |∇uxi

|2(
|x− y

∣∣+ ε
)γ

[
G′

ε(uxi
)− β

Gε(uxi
)

uxi

]
dy ≤ C,

for some C = C(N, p, q0, γ, α, β,Ω, dist(E, ∂Ω)) > 0. If we introduce the function

Fε(t) =

ˆ t

0

|τ | p−2−β
2

√
G′

ε(τ) − β
Gε(τ)

τ
dτ,

from (C.10) we can infer in particular that
ˆ

E

|∇Fε(uxi
)|2 dx ≤ C.

Observe that we also used that |∇u|p−2 ≥ |uxi
|p−2. Moreover, by construction of Fε, it is not difficult to see

that
ˆ

E

|Fε(uxi
)|2 dx ≤ Cβ

ˆ

E

|uxi
|p−β .
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This shows that, up to extracting an infinitesimal sequence {εn}n∈N ⊂ (0, 1), we have that Fε(uxi
) converges

weakly in W 1,2(E) to a function F ∈ W 1,2(E). By using that

(C.11) lim
ε→0

[
G′

ε(τ) − β
Gε(τ)

τ

]
= 1− β, for τ 6= 0,

we get that

lim
ε→0

Fε(t) = (1− β)

ˆ t

0

|τ | p−2−β
2 dτ =

2 (1− β)

p− β
|t| p−2−β

2 t,

and thus

lim
ε→0

Fε(uxi
) =

2 (1− β)

p− β
|uxi

| p−2−β
2 uxi

, a. e. in E.

This permits to identify the limit function F , thanks to [21, Lemme 4.8], which is then given by

2 (1− β)

p− β
|uxi

| p−2−β
2 uxi

= F ∈W 1,2(E).

This already shows the first part of the statement.
Finally, by using Fatou’s Lemma together with (C.11), we may take the limit as ε goes to 0 in (C.10) and

obtain
ˆ

E\Zi

|∇u|p−2 |uxi
|−β |∇uxi

|2
|x− y|γ dy ≤ C.

The previous bound holds uniformly with respect to x ∈ Ω, thus we get the desired conclusion. �

We then have the following immediate consequence of Proposition C.2.

Corollary C.3. Under the assumptions of Proposition C.2, for every β ∈ (−∞, 1) we have

sup
x∈Ω

ˆ

E

|∇u(y)|p−2−β |D2u(y)|2
|x− y|γ dy ≤ C2,

for some C2 = C2(N, p, q0, α, β, γ,Ω, dist(E, ∂Ω)) > 0.

Proof. We first suppose that 0 ≤ β < 1. From (C.3), by using that |uxi
|−β ≥ |∇u|−β, we immediately get

sup
x∈Ω

ˆ

E\Zi

|∇u(y)|p−2−β |∇uxi
(y)|2

|x− y|γ dy ≤ C1, for i = 1, . . . , N.

We then observe that uxi
∈ C1(Ω \ Z) and thus it belongs to W 1,1

loc (Ω \ Z). By appealing to [28, Theorem
6.19], we have

∇uxi
= 0, a. e. in Zi ∩ (Ω \ Z).

By using this fact and summing over i = 1, . . . , N , we get the claimed inequality, by recalling that |Z| = 0,
see Remark C.1.

The case β < 0 can now be reduced to the case β = 0: it is sufficient to use that ‖∇u‖L∞(Ω) ≤ L < +∞
by Theorem 2.5, thus we get

sup
x∈Ω

ˆ

E

|∇u(y)|p−2−β |D2u(y)|2
|x− y|γ dy ≤ L−β sup

x∈Ω

ˆ

E

|∇u(y)|p−2 |D2u(y)|2
|x− y|γ dy.

This concludes the proof. �

We also need the following a priori estimate, which corresponds to [11, Theorem 2.3].

Proposition C.4. Under the assumptions of Proposition C.2, for every K ⋐ E ⋐ Ω and every b < 1 we

have

sup
x∈Ω

ˆ

K

1

|∇u(y)|(p−1) b|x− y|γ dy ≤ C3

(
inf
E
u
)1−q

(
1 +

(
inf
E
u
)1−q

)
,

where C3 = C3(N, p, q0, α, b, γ,Ω, dist(K, ∂E), dist(E, ∂Ω)) > 0.
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Proof. Without loss of generality, we prove the result for γ ≥ 0. The heuristic idea is to test equation (1.2)
with |∇u|−(p−1) b |x− y|−γφ, where φ ∈ C∞

0 (E) is a cut-off function such that

φ ≡ 1 in K, 0 ≤ φ ≤ 1, ‖∇φ‖L∞(E) ≤
C

dist(K, ∂E)
.

To make this precise, we fix x ∈ Ω and use for every ε > 0 the test function

(C.12) ψ(y) = (|∇u(y)|p−1 + ε)−b
(
|x− y|+ ε

)−γ
φ(y).

This is a product of a Lipschitz function of |∇u|p−1 and a smooth function with compact support in Ω. In light

of (C.2), we have that this function belongs toW 1,2
0 (Ω). If we now use that u ∈ L∞(Ω) and ∇u ∈ L∞(Ω), we

see that in the weak formulation of (1.2) we can in particular admit test functions ψ ∈ W 1,2
0 (Ω). Therefore

the test function in (C.12) is feasible.
This gives

λp,q

ˆ

Ω

uq−1

(|∇u|p−1 + ε)b
φ(

|x− y|+ ε
)γ dy

=

ˆ

Ω

〈|∇u|p−2 ∇u,∇φ〉
(|∇u|p−1 + ε)b

1(
|x− y|+ ε

)γ dy

− b (p− 1)

ˆ

Ω

|∇u|2 p−5

(|∇u|p−1 + ε)b+1
〈D2u∇u,∇u〉 φ(

|x− y|+ ε
)γ dy

+

ˆ

Ω

|∇u|p−2

(|∇u|p−1 + ε)b
〈∇u,∇

(
|x− y|+ ε

)−γ〉φdy.

Observe that we used Remark C.1, to compute the gradient of (|∇u(y)|p−1 + ε)−b. Using that

u ≥ inf
E
u > 0,

and the lower bound on λp,q given by (2.7), we obtain
(
inf
E
u
)q−1

ˆ

Ω

φ

(|∇u|p−1 + ε)b
1(

|x− y|+ ε
)γ dy ≤ C

ˆ

Ω

|∇u|p−1 |∇φ|
(|∇u|p−1 + ε)b

dy(
|x− y|+ ε

)γ

+ C b

ˆ

Ω

|∇u|2 p−5 φ

(|∇u|p−1 + ε)b+1

〈D2u∇u,∇u〉(
|x− y|+ ε

)γ dy

+ C γ

ˆ

Ω

|∇u|p−1 φ

(|∇u|p−1 + ε)b
dy

(
|x− y|+ ε

)γ+1

=: J1 + J2 + J3,

(C.13)

where C = C(N, p, q0,Ω) > 0. We observe that, by using (C.6), we have

J1 + J3 ≤ C

ˆ

Ω

|∇u|p−1

(|∇u|p−1 + ε)b
φ+ |∇φ|

(
|x− y|+ ε

)γ+1 dy,

for a constant C depending on N, p, q0,Ω and γ. We can then go on by observing that |∇u|p−1 ≤ |∇u|p−1+ε
and b < 1, using the Lipschitz estimate of Theorem 2.5 and the properties of φ. This gives

J1 + J3 ≤ C

ˆ

Ω

1
(
|x− y|+ ε

)γ+1 dy,

for a constant C = C(N, p, q0, α, b, γ,Ω, dist(K, ∂E)) > 0. Then we can estimate the last integral as in (C.5).
For J2 we have

J2 ≤ C

ˆ

Ω

|∇u|2 p−3

(|∇u|p−1 + ε)b+1

|D2u|(
|x− y|+ ε

)γ φdy.
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In the last integral above, we use Young’s inequality as follows

C

ˆ

Ω

|∇u|2 p−3

(|∇u|p−1 + ε)b+1

|D2u|(
|x− y|+ ε

)γ φdy

≤

(
inf
E
u
)q−1

2

ˆ

Ω

1

(|∇u|p−1 + ε)b
φ(

|x− y|+ ε
)γ dy

+
C2

2

(
inf
E
u
)1−q

ˆ

Ω

|∇u|4 p−6

(|∇u|p−1 + ε)b+2

|D2u|2 φ(
|x− y|+ ε

)γ dy

≤ (infE u)
q−1

2

ˆ

Ω

1

(|∇u|p−1 + ε)b
φ(

|x− y|+ ε
)γ dy

+
C2

2

(
inf
E
u
)1−q

ˆ

Ω

|∇u|(2−b) (p−1)−2 |D2u|2 φ(
|x− y|+ ε

)γ dy.

Note that we have

(2− b) (p− 1)− 2 > p− 3,

and thus the last integral is finite and uniformly bounded, thanks to Corollary C.3: it is sufficient to choose
in the latter

β = p− (2− b) (p− 1),

which is feasible. We then obtain from (C.13)

(
inf
E
u
)q−1

ˆ

Ω

φ

(|∇u|p−1 + ε)b
1(

|x− y|+ ε
)γ dy ≤ C

(
1 +

(
inf
E
u
)1−q

)

+

(
inf
E
u
)q−1

2

ˆ

Ω

1

(|∇u|p−1 + ε)b
φ(

|x− y|+ ε
)γ dy,

upon renaming the constant C = C(N, p, q0, α, b, γ,Ω, dist(E, ∂Ω)) > 0. The term on the right-hand side
can now be absorbed in the left-hand side. Since φ = 1 on K, this implies the desired result upon letting ε
go to 0 and using Fatou’s Lemma. �

C.3. Negative integrability. We are finally ready for the main result of this section. Again, we will only
treat the case N ≥ 3 in detail.

Theorem C.5. Let 2 < p < q0 < p∗ and let Ω ⊂ R
N be an open bounded connected set, with boundary of

class C1,α, for some 0 < α < 1. For every p ≤ q ≤ q0, let uq ∈ W 1,p
0 (Ω) be a positive minimizer of (1.1).

Then for {
γ < N − 2, if N ≥ 3,
γ ≤ 0, if N = 2,

and every r < p− 1, there exists S = S(α,N, p, q0,Ω, r, γ) > 0 such that

sup
x∈Ω

ˆ

Ω

1

|∇uq(y)|r |y − x|γ dy ≤ S.

In particular, we also have

(C.14)

ˆ

Ω

1

|∇uq(y)|r
dy ≤ S̃,

for some S̃ = S̃(α,N, p, q0,Ω, r) > 0.
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Proof. This is [11, Theorem 2.3]: as claimed, we just want to pay attention to the dependence of the constant
S on the data. We start by observing that by Theorem 2.5 and (C.5), we have

ˆ

Ωδ

1

|∇uq(y)|r |y − x|γ dy ≤ 1

µr
0

ˆ

Ωδ

1

|y − x|γ dy ≤ N ωN

(N − γ)µr
0

(
diam(Ω)

)N−γ

.(C.15)

Here δ and µ0 are as in the statement of Theorem 2.5. Thus we have a uniform estimate, at least when
integrating in a fixed neighborhood of the boundary.

In order to prove a uniform estimate on
ˆ

Ω\Ωδ

1

|∇uq(y)|r |y − x|γ dy, for every x ∈ Ω,

we apply Proposition C.4 with

E = Ω \ Ωδ/2, K = Ω \ Ωδ, b =
r

p− 1
,

and with the constant µ1 provided by Theorem 2.5. This yields
ˆ

Ω\Ωδ

1

|∇uq(y)|r |y − x|γ dy ≤ C2 µ
1−q
1

(
1 + µ1−q

1

)
.

By using that

µ1−q
1 ≤ max

{
µ1−p
1 , µ1−q0

1

}
, for p ≤ q ≤ q0,

we get the desired estimate.
Finally, the estimate (C.14) is an easy consequence of the previous one, it is sufficient to take γ = 0. �
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