Wind turbine plants are complex dynamic and uncertain processes driven by stochastic inputs and disturbances, as well as different loads represented by gyroscopic, centrifugal, and gravitational forces. Moreover, as their aerodynamic models are nonlinear, both modelling and control become challenging problems. On one hand, high–fidelity simulators should contain different parameters and variables in order to accurately describe the main dynamic system behaviour. Therefore, the development of modelling and control for wind turbine systems should consider these complexity aspects. On the other hand, these control solutions have to include the main wind turbine dynamic characteristics without becoming too complicated. The main point of this paper is thus to provide two practical examples of development of robust control strategies when applied to a simulated wind turbine plant. Extended simulations with the wind turbine benchhmark model and the Monte–Carlo tool represent the instruments for assessing the robustness and reliability aspects of the developed control methodologies when the model–reality mismatch and measurement errors are also considered. Advantages and drawbacks of these regulation methods are also highlighted with respect to different control strategies via proper performance metrics.

Data-Driven and Model-Based Control Techniques for a Wind Turbine Benchmark Model

Simani, Silvio
Primo
Writing – Original Draft Preparation
;
Farsoni, Saverio
Secondo
Writing – Review & Editing
;
2022

Abstract

Wind turbine plants are complex dynamic and uncertain processes driven by stochastic inputs and disturbances, as well as different loads represented by gyroscopic, centrifugal, and gravitational forces. Moreover, as their aerodynamic models are nonlinear, both modelling and control become challenging problems. On one hand, high–fidelity simulators should contain different parameters and variables in order to accurately describe the main dynamic system behaviour. Therefore, the development of modelling and control for wind turbine systems should consider these complexity aspects. On the other hand, these control solutions have to include the main wind turbine dynamic characteristics without becoming too complicated. The main point of this paper is thus to provide two practical examples of development of robust control strategies when applied to a simulated wind turbine plant. Extended simulations with the wind turbine benchhmark model and the Monte–Carlo tool represent the instruments for assessing the robustness and reliability aspects of the developed control methodologies when the model–reality mismatch and measurement errors are also considered. Advantages and drawbacks of these regulation methods are also highlighted with respect to different control strategies via proper performance metrics.
2022
Simani, Silvio; Farsoni, Saverio; Castaldi, Paolo
File in questo prodotto:
File Dimensione Formato  
Simani-Farsoni-Castaldi-IJRAT-2022.pdf

accesso aperto

Descrizione: Full editorial version
Tipologia: Full text (versione editoriale)
Licenza: Creative commons
Dimensione 4.09 MB
Formato Adobe PDF
4.09 MB Adobe PDF Visualizza/Apri

I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/2501201
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact