ABSTRACT Objectives To provide clinical information on overcorrection to be included in the initial digital setup to make clear aligner therapy (CAT) more efficient. Materials and Methods Prescription data for 150 patients (80 women and 70 men; mean age 33.7 ± 12.7 years) treated successfully with CAT (F22 Aligners, Sweden & Martina, Due Carrare, Italy) and requiring only a single, minimal finishing phase were acquired retrospectively. The inclusion criteria were Class I dental malocclusion with only minimal crowding (≤3 mm), 12–20 aligner steps per arch, no use of auxiliaries or interarch elastics, and rotations ≤25° for round-shaped teeth. The prescribed and corrective movements to be achieved in the main and finishing treatment phases, respectively, were quantified by the dedicated clear aligner setup software. The magnitudes of inclination (buccal-lingual crown tipping), angulation (mesial-distal crown tipping), rotation, intrusion, and extrusion were extracted and analyzed by tooth type, maxilla and mandible, and both arches. Descriptive statistics, that is, mean, standard deviation, and percentage, were calculated for each movement investigated. Classification and regression trees (CART) were generated using the model-based recursive partitioning approach, and the corrective movements were correlated with respect to both the amount of the movements prescribed and the tooth type. Statistical significance was set at 5%. Results Inclination and rotation required the greatest correction, whereas angulation, intrusion, and extrusion required only minimal correction. Expressed as a percentage of prescribed movement, mean corrective movements were 20.5% for inclination, 14.5% angulation, 28.4% rotation, 11.7% extrusion, and 22% intrusion. According to CART, all corrective movements except extrusion depended on both tooth type and the magnitude of prescribed movement. Conclusions To achieve more efficient CAT, approximately 20% overcorrection should be added to the initial planning phase when planning challenging movements such as inclination and rotation.

Analysis of overcorrection to be included for planning clear aligner therapy: a retrospective study

Mario Palone;Andrea Pignotti;Giorgio Alfredo Spedicato;Francesca Cremonini;Luca Lombardo
2023

Abstract

ABSTRACT Objectives To provide clinical information on overcorrection to be included in the initial digital setup to make clear aligner therapy (CAT) more efficient. Materials and Methods Prescription data for 150 patients (80 women and 70 men; mean age 33.7 ± 12.7 years) treated successfully with CAT (F22 Aligners, Sweden & Martina, Due Carrare, Italy) and requiring only a single, minimal finishing phase were acquired retrospectively. The inclusion criteria were Class I dental malocclusion with only minimal crowding (≤3 mm), 12–20 aligner steps per arch, no use of auxiliaries or interarch elastics, and rotations ≤25° for round-shaped teeth. The prescribed and corrective movements to be achieved in the main and finishing treatment phases, respectively, were quantified by the dedicated clear aligner setup software. The magnitudes of inclination (buccal-lingual crown tipping), angulation (mesial-distal crown tipping), rotation, intrusion, and extrusion were extracted and analyzed by tooth type, maxilla and mandible, and both arches. Descriptive statistics, that is, mean, standard deviation, and percentage, were calculated for each movement investigated. Classification and regression trees (CART) were generated using the model-based recursive partitioning approach, and the corrective movements were correlated with respect to both the amount of the movements prescribed and the tooth type. Statistical significance was set at 5%. Results Inclination and rotation required the greatest correction, whereas angulation, intrusion, and extrusion required only minimal correction. Expressed as a percentage of prescribed movement, mean corrective movements were 20.5% for inclination, 14.5% angulation, 28.4% rotation, 11.7% extrusion, and 22% intrusion. According to CART, all corrective movements except extrusion depended on both tooth type and the magnitude of prescribed movement. Conclusions To achieve more efficient CAT, approximately 20% overcorrection should be added to the initial planning phase when planning challenging movements such as inclination and rotation.
2023
Palone, Mario; Pignotti, Andrea; Morin, Eugenia; Pancari, Carolina; Spedicato, GIORGIO ALFREDO; Cremonini, Francesca; Lombardo, Luca
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/2500987
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus 10
  • ???jsp.display-item.citation.isi??? 7
social impact