The fatty acid composition of a food product provides information regarding the origin of the product and its overall quality, such as its nutritional value. This work proposes a fast and accurate method for preparing fatty acid methyl esters from a wide variety of food products by using a single-step microwave-assisted extraction and derivatization coupled to reversed fill/flush flow modulation comprehensive two-dimensional gas chromatography (GC×GC) – flame ionization detector (FID) to tentatively identify and quantify the individual fatty acid. The robustness of the GC×GC – FID platform was successfully assessed, as well as the reliability of the entire proposed procedure, assuring repeatability largely below 10%. The enhanced separation obtained by the use of GC×GC allowed for the identification of 81 FAMEs in a single run of 30 min. The fatty acid methyl esters profiles obtained with the proposed microwave-assisted extraction and derivatization were comparable with reference methods from the literature and the American Oil Chemistry Society. This method also proved to be a significant step towards a greener procedure than the reference one when evaluated based on the PrepAGREE metrics that have been recently proposed.

A high throughput method for fatty acid profiling using simultaneous microwave-assisted extraction and derivatization followed by reversed fill/flush flow modulation comprehensive multidimensional gas chromatography

Beccaria, Marco;De Luca, Chiara;
2022

Abstract

The fatty acid composition of a food product provides information regarding the origin of the product and its overall quality, such as its nutritional value. This work proposes a fast and accurate method for preparing fatty acid methyl esters from a wide variety of food products by using a single-step microwave-assisted extraction and derivatization coupled to reversed fill/flush flow modulation comprehensive two-dimensional gas chromatography (GC×GC) – flame ionization detector (FID) to tentatively identify and quantify the individual fatty acid. The robustness of the GC×GC – FID platform was successfully assessed, as well as the reliability of the entire proposed procedure, assuring repeatability largely below 10%. The enhanced separation obtained by the use of GC×GC allowed for the identification of 81 FAMEs in a single run of 30 min. The fatty acid methyl esters profiles obtained with the proposed microwave-assisted extraction and derivatization were comparable with reference methods from the literature and the American Oil Chemistry Society. This method also proved to be a significant step towards a greener procedure than the reference one when evaluated based on the PrepAGREE metrics that have been recently proposed.
2022
Fina, Angelica; Mascrez, Steven; Beccaria, Marco; De Luca, Chiara; Aspromonte, Juan; Cordero, Chiara; Purcaro, Giorgia
File in questo prodotto:
File Dimensione Formato  
1-s2.0-S2772582022000365-main.pdf

accesso aperto

Descrizione: versione editoriale
Tipologia: Full text (versione editoriale)
Licenza: Creative commons
Dimensione 2.8 MB
Formato Adobe PDF
2.8 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/2497631
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? ND
social impact