To investigate the effects of uncertainties of parameters involved in computational hemodynamics, with particular concern on geometrical and mechanical parameters defining the viscoelastic vessel wall behavior, we propose a second-order stochastic asymptotic-preserving IMEX Finite Volume scheme, which guarantees spectral convergence in the stochastic space and ease of implementation, avoiding the risk of loss of hyperbolicity of the system of stochastic equations. The method is applied to solve the 1D a-FSI blood flow model, presenting numerical results of univariate and multivariate uncertainty quantification analyses concerning baseline and patient-specific single-artery tests. Computed pressure waveforms are compared with in-vivo records.

The value of viscoelasticity in computational hemodynamics: Uncertainty quantification and comparison with in-vivo data

Bertaglia Giulia
Primo
;
Caleffi Valerio
Secondo
;
Pareschi Lorenzo
Penultimo
;
Valiani Alessandro
Ultimo
2022

Abstract

To investigate the effects of uncertainties of parameters involved in computational hemodynamics, with particular concern on geometrical and mechanical parameters defining the viscoelastic vessel wall behavior, we propose a second-order stochastic asymptotic-preserving IMEX Finite Volume scheme, which guarantees spectral convergence in the stochastic space and ease of implementation, avoiding the risk of loss of hyperbolicity of the system of stochastic equations. The method is applied to solve the 1D a-FSI blood flow model, presenting numerical results of univariate and multivariate uncertainty quantification analyses concerning baseline and patient-specific single-artery tests. Computed pressure waveforms are compared with in-vivo records.
2022
978-0-9562914-6-2
blood flow modeling, fluid-structure interaction, uncertainty quantification
File in questo prodotto:
File Dimensione Formato  
CMBE22_BertagliaGiulia.pdf

accesso aperto

Descrizione: Full text ahead of print
Tipologia: Full text (versione editoriale)
Licenza: PUBBLICO - Pubblico con Copyright
Dimensione 568.39 kB
Formato Adobe PDF
568.39 kB Adobe PDF Visualizza/Apri

I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/2496087
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact