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SUMMARY
To investigate the effects of uncertainties of parameters involved in computational hemodynamics,
with particular concern on geometrical and mechanical parameters defining the viscoelastic vessel
wall behavior, we propose a second-order stochastic asymptotic-preserving IMEX Finite Volume
scheme, which guarantees spectral convergence in the stochastic space and ease of implementation,
avoiding the risk of loss of hyperbolicity of the system of stochastic equations. The method is applied
to solve the 1D a-FSI blood flow model, presenting numerical results of univariate and multivariate
uncertainty quantification analyses concerning baseline and patient-specific single-artery tests. Com-
puted pressure waveforms are compared with in-vivo records.
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1 INTRODUCTION

The acknowledgment of mathematical models as powerful support for the research in hemodynamics
and cardiovascular medicine has been widely shared. In recent years, viscoelastic properties of vessel
walls have also been recognized as one of the features which must be realistically included in a
mathematical model to obtain accurate numerical results [1]. In fact, when characterizing the fluid-
structure interaction (FSI) occurring between vessel wall and inner blood by a simpler elastic model,
the information about hysteresis, i.e. energy dissipated by viscoelastic effects, is lost and pressure
peaks may be wrongly estimated [2]. Among the existing linear viscoelastic models, the Standard
Linear Solid (SLS) model provides a good characterization of the mechanical behavior of vessels,
better than the frequently adopted Kelvin-Voigt model [2, 3], as the latter is not able to describe the
exponential decay of the vessel wall stress over time [4].

When applying computational blood flow models to patient-specific simulations for clinical decision-
making, the geometrical and mechanical parameters underlying FSI effects, as well as others compu-
tational inputs that need to be personalized, constitute possible sources of errors, given the large bio-
logical variability and the uncertainty underlying all measurements [5]. Therefore, the development
and application of efficient computational methods for the assessment of the impact of parametric
fluctuations on numerical solutions is essential for a correct interpretation of numerical simulations
of cardiovascular hemodynamics [6, 7, 8].

2 METHODOLOGY

2.1 Mathematical model

The classical 1D non-linear, non-conservative system of incompressible blood flow in a compliant
vessel is composed of the well-established equations of conservation of mass and momentum [2, 3].



To close the system, a constitutive law correlating the pressure inside the vessel to the cross-sectional
area is needed. If this law is derived from the SLS model and is included in the system of equations
in PDE form, the here discussed augmented fluid-structure interaction (a-FSI) system is obtained
[10, 11]. When choosing to transmit statistical information to the problem, related to uncertain input
parameters z1, . . . , zn which may be collected in a vector z = (z1, . . . , zn)T ∈ Ω ⊆ Rdz , the solution
of the system not only depends on the physical variables x and t (space and time, respectively) but
also on the random vector. Hence, the stochastic a-FSI hyperbolic system, valid for both arteries and
veins, reads [9]:

∂tA(x, t, z) + ∂xq(x, t, z) = 0 (1a)

∂tq(x, t, z) + ∂x

(
q2(x, t, z)

A(x, t, z)

)
+
A(x, t, z)

ρ
∂xp(x, t, z) = f(x, t, z) (1b)

∂tp(x, t, z) + d(x, t, z) ∂xq(x, t, z) = S(x, t, z), (1c)

whereA is the cross-sectional area, q is the flow rate, p is the internal pressure, ρ is the blood density,
f is the friction loss term, d is the parameter depending on the elastic contribution of the wall and S
is the source term accounting for viscoelastic damping effects [10, 11].

2.2 Numerical method

To solve system (1), a stochastic collocation IMEX Finite Volume (FV) method is adopted [9]. The
scheme combines: the stochastic collocation method, which guarantees spectral convergence in the
stochastic space and ease of implementation compared to intrusive methods, avoiding the risk of loss
of hyperbolicity of the approximated stochastic system of governing equations [6, 8]; a second-order
stiffly-accurate IMEX Runge-Kutta scheme that satisfies the asymptotic-preserving (AP) property
in the stiff limit, i.e. the scheme is consistent with the equilibrium limit, which corresponds to the
asymptotic elastic behavior [9, 12]; a second-order FV solver, which guarantees the correct treatment
of non-conservative terms of the hyperbolic model when computing numerical fluxes [13].

To define boundary conditions, at the inlet of the 1D domain a flow rate or velocity waveform is
prescribed, based on available in-vivo data; while at the outlet, to simulate the effects of resistance
and capacity of peripheral vessels on pulse wave propagation, the 3-element Windkessel model is
considered [2].

3 RESULTS AND CONCLUSIONS

We aim at investigating the effects of uncertainty of parameters involved in the viscoelastic constitu-
tive equation, on which the a-FSI system (1) is based. Therefore, we assume as random inputs the
equilibrium area A0 = A0(z), the reference celerity c0 = c0(z) and the viscosity coefficient of the
wall η = η(z). With this choice, all the uncertainty enclosed in the 3 parameters characterizing the
viscoelastic SLS model, namely instantaneous Young modulus E0(z), asymptotic Young modulus
E∞(z) and relaxation time τr(z), is captured [9]. The chosen uncertain parameters are modeled as
random Gaussian-distributed variables. Given the different sources of error related to the estimate
procedures of these inputs, different degrees of uncertainty are associated to the three parameters of
interest: 10% for A0 and c0 and 50% for η, which is affected by a more significant uncertainty.

To assess the impact of these parametric uncertainties on the numerical solution of the a-FSI blood
flow model, two single-artery tests are presented: the first concerning a baseline thoracic aorta (TA)
and the second considering a patient-specific common carotid artery (CCA). To evaluate the relevance
of viscous damping effects in terms of sensitivity of the model, both the elastic and the viscoelastic
characterization of the vessel wall behavior are considered for the TA simulation; while for the CCA
test only the more realistic viscoelastic law is taken into account. For each elastic (resp. viscoelastic)
simulation, 2 (resp. 3) univariate analyses are performed, followed by a multivariate analysis.

Elastic and viscoelastic results of the TA test are shown in Fig. 1. A different sensitivity emerges when
comparing the variability of flow rate to the one of pressure, the latter resulting much more sensitive
to the uncertainties considered. When comparing pressure waveforms predicted adopting the elastic
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Figure 1: Numerical results representative of one cardiac cycle obtained in the baseline TA test when
characterizing the mechanical behavior of the vessel wall through an elastic (first row) or a viscoelastic
(second row) law. Results are presented in terms of flow rate (a,c) and pressure (b,d) at the midpoint
of the domain, for 95% confidence intervals (colored area) and corresponding expectations (colored
line).
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Figure 2: Numerical results representative of one cardiac cycle of a patient-specific CCA test, pre-
sented in terms of flow rate (a) and pressure (b) at the midpoint of the domain, for 95% confidence
intervals (colored area) and corresponding expectations (colored line). Computed pressures are com-
pared to the patient-specific waveform measured in-vivo with the PulsePen tonometer, as described
in [11].



tube law with respect to those obtained with the viscoelastic characterization, it can be noticed that
the great uncertainty of the viscosity parameter η plays a major role in the output, enlarging the
confidence interval. Nevertheless, the impact of the wall viscosity is principally visible in the systolic
peak and dicrotic limb and not in the anacrotic limb. The relevance of considering viscoelastic effects
of arterial walls (and not only elastic ones) is confirmed when comparing expectations of computed
pressures, being the systolic value of the viscoelastic simulation consistently damped with respect to
the one obtained in the elastic run.

Results of the patient-specific CCA test, presented in Fig. 2, show a similar sensitivity. Furthermore,
confidence intervals well capture the in-vivo signal and the expected pressure trend is similar to the
measured one, confirming the validity of the proposed methodology.
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