Negli ultimi decenni, l’analisi vibrazionale è stata sfruttata per il monitoraggio di molti sistemi meccanici per applicazioni industriali. Nonostante molte pubblicazioni abbiano dimostrato come la diagnostica vibrazionale possa raggiungere risultati soddisfacenti, lo scenario industriale odierno è in profondo cambiamento, guidato dalla necessità di ridurre tempi e costi produttivi. In questa direzione, la ricerca deve concentrarsi sul miglioramento dell’efficienza computazionale delle tecniche di analisi del segnale applicate a fini diagnostici. Allo stesso modo, il mondo industriale richiede una sempre maggior attenzione per la manutenzione predittiva, al fine di stimare l’effettivo danneggiamento del sistema evitando così inutili fermi macchina per operazioni manutentive. In tale ambito, negli ultimi anni l’attività di ricerca si sta spostando verso lo sviluppo di modelli prognostici finalizzati alla stima della vita utile residua dei componenti. Tuttavia, è importante ricordare come i due ambiti siano strettamente connessi, essendo la diagnostica la base su cui fondare l’efficacia di ciascun modello prognostico. Su questa base, questa tesi è stata incentrata su queste due diverse, ma tra loro connesse, aree al fine di identificare e predire possibile cause di cedimento su macchine rotanti per applicazioni industriali. La prima parte della tesi è concentrata sullo sviluppo di un nuovo indicatore di blind deconvolution per l’identificazione di difetti su organi rotanti sulla base della teoria ciclostazionaria. Il criterio presentato vuole andare a ridurre il costo computazionale richiesto dalla blind deconvolution tramite l’utilizzo della serie di Fourier-Bessel grazie alla sua natura modulata, maggiormente affine alla tipica firma vibratoria del difetto. L’indicatore proposto viene accuratamente confrontato con il suo analogo basato sulla classica serie di Fourier considerando sia segnali simulati che segnali di vibrazione reali. Il confronto vuole dimostrare il miglioramento fornito dal nuovo criterio in termini sia di minor numero di operazioni richieste dall’algoritmo che di efficacia diagnostica anche in condizioni di segnale molto rumoroso. Il contributo innovativo di questa parte riguarda la combinazione di ciclostazionarietà e serie di Furier-Bessel che porta alla definizione di un nuovo criterio di blind deconvolution in grado di mantenere l’efficacia diagnostica della ciclostazionarietà ma con un minor tempo computazionale per venire incontro alle richieste del mondo industriale. La second parte riguarda la definizione di un nuovo modello prognostico, appartenente alla famiglia degli hidden Markov models, costruito partendo da una distribuzione Gaussiana generalizzata. L’obbiettivo del metodo proposto è una miglior riproduzione della reale distribuzione dei dati, in particolar modo negli ultimi stadi del danneggiamento. Infatti, la comparsa e l’evoluzione del difetto comporta una modifica della distribuzione delle osservazioni fra i diversi stati. Di conseguenza, una densità di probabilità generalizzata permette la modificazione della forma della distribuzione tramite diversi valori dei parametri del modello. Il metodo proposto viene confrontato con il classico hidden Markov model di base Gaussiana in termini di qualità di riproduzione della distribuzione e predizione della sequenza di stati tramite l’analisi di alcuni test di rottura su cuscinetti volventi e sistemi complessi. L’innovatività di questa parte è data dalla definizione di un algoritmo iterativo per la stima dei parametri del modello nell’ipotesi di distribuzione Gaussiana generalizzata, sia nel caso monovariato che multivariato, partendo dalle osservazioni sul sistema fisico in esame.

In the last decades, the vibration analysis has been exploited for monitoring many mechanical systems for industrial applications. Although several works demonstrated how the vibration based diagnostics may reach satisfactory results, the nowadays industrial scenario is deeply changing, driven by the fundamental need of time and cost reduction. In this direction, the academic research has to focus on the improvement of the computational efficiency for the signal processing techniques applied in the mechanical diagnostics field. In the same way, the industrial word requires an increasing attention to the predictive maintenance for estimating the system failure avoiding unnecessary machine downtimes for maintenance operations. In this contest, in the recent years the research activity has been moved to the development of prognostic models for the prediction of the remaining useful life. However, it is important to keep in mind how the two fields are strictly connected, being the diagnostics the base on which build the effectiveness of each prognostic model. On these grounds, this thesis has been focused on these two different but linked areas for the detection and prediction of possible failures inside rotating machines in the industrial framework. The first part of the thesis focuses on the development of a blind deconvolution indicator based on the cyclostationary theory for the fault identification in rotating machines. The novel criterion aims to decrease the computational cost of the blind deconvolution through the exploitation of the Fourier-Bessel series expansion due to its modulated nature more comparable with the fault related vibration pattern. The proposed indicator is extensively compared to the other cyclostationary one based on the classic Fourier transform, taking into account both synthesized and real vibration signals. The comparison proves the improvement given by the proposed criterion in terms of number of operations required by the blind deconvolution algorithm as well as its diagnostic capability also for noisy measured signals. The originality of this part regards the combination of cyclostationarity and Fourier-Bessel transform that leads to the definition of a novel blind deconvolution criterion that keeps the diagnostic effectiveness of cyclostationarity reducing the computational cost in order to meet the industrial requirements. The second part regards the definition of a novel prognostic model from the family of the hidden Markov models constructed on a generalized Gaussian distribution. The target of the proposed method is a better fitting quality of the data distribution in the last damaging phase. In fact, the fault appearance and evolution reflects on a modification of the observation distribution within the states and consequently a generalized density function allows the changes on the distribution form through the values of some model parameters. The proposed method is compared in terms of fitting quality and state sequence prediction to the classic Gaussian based hidden Markov model through the analysis of several run to failure tests performed on rolling element bearings and more complex systems. The novelty of this part regards the definition of a new iterative algorithm for the estimation of the generalized Gaussian model parameters starting from the observations on the physical system for both monovariate and multivariate distributions. Furthermore, the strictly connection between diagnostics and prognostics is demonstrated through the analysis of a not monotonically increasing damaging process proving how the selection of a suitable indicator enables the correct health state estimation.

Diagnostics and prognostics of rotating machines through cyclostationary methods and machine learning

SOAVE, Elia
2022

Abstract

Negli ultimi decenni, l’analisi vibrazionale è stata sfruttata per il monitoraggio di molti sistemi meccanici per applicazioni industriali. Nonostante molte pubblicazioni abbiano dimostrato come la diagnostica vibrazionale possa raggiungere risultati soddisfacenti, lo scenario industriale odierno è in profondo cambiamento, guidato dalla necessità di ridurre tempi e costi produttivi. In questa direzione, la ricerca deve concentrarsi sul miglioramento dell’efficienza computazionale delle tecniche di analisi del segnale applicate a fini diagnostici. Allo stesso modo, il mondo industriale richiede una sempre maggior attenzione per la manutenzione predittiva, al fine di stimare l’effettivo danneggiamento del sistema evitando così inutili fermi macchina per operazioni manutentive. In tale ambito, negli ultimi anni l’attività di ricerca si sta spostando verso lo sviluppo di modelli prognostici finalizzati alla stima della vita utile residua dei componenti. Tuttavia, è importante ricordare come i due ambiti siano strettamente connessi, essendo la diagnostica la base su cui fondare l’efficacia di ciascun modello prognostico. Su questa base, questa tesi è stata incentrata su queste due diverse, ma tra loro connesse, aree al fine di identificare e predire possibile cause di cedimento su macchine rotanti per applicazioni industriali. La prima parte della tesi è concentrata sullo sviluppo di un nuovo indicatore di blind deconvolution per l’identificazione di difetti su organi rotanti sulla base della teoria ciclostazionaria. Il criterio presentato vuole andare a ridurre il costo computazionale richiesto dalla blind deconvolution tramite l’utilizzo della serie di Fourier-Bessel grazie alla sua natura modulata, maggiormente affine alla tipica firma vibratoria del difetto. L’indicatore proposto viene accuratamente confrontato con il suo analogo basato sulla classica serie di Fourier considerando sia segnali simulati che segnali di vibrazione reali. Il confronto vuole dimostrare il miglioramento fornito dal nuovo criterio in termini sia di minor numero di operazioni richieste dall’algoritmo che di efficacia diagnostica anche in condizioni di segnale molto rumoroso. Il contributo innovativo di questa parte riguarda la combinazione di ciclostazionarietà e serie di Furier-Bessel che porta alla definizione di un nuovo criterio di blind deconvolution in grado di mantenere l’efficacia diagnostica della ciclostazionarietà ma con un minor tempo computazionale per venire incontro alle richieste del mondo industriale. La second parte riguarda la definizione di un nuovo modello prognostico, appartenente alla famiglia degli hidden Markov models, costruito partendo da una distribuzione Gaussiana generalizzata. L’obbiettivo del metodo proposto è una miglior riproduzione della reale distribuzione dei dati, in particolar modo negli ultimi stadi del danneggiamento. Infatti, la comparsa e l’evoluzione del difetto comporta una modifica della distribuzione delle osservazioni fra i diversi stati. Di conseguenza, una densità di probabilità generalizzata permette la modificazione della forma della distribuzione tramite diversi valori dei parametri del modello. Il metodo proposto viene confrontato con il classico hidden Markov model di base Gaussiana in termini di qualità di riproduzione della distribuzione e predizione della sequenza di stati tramite l’analisi di alcuni test di rottura su cuscinetti volventi e sistemi complessi. L’innovatività di questa parte è data dalla definizione di un algoritmo iterativo per la stima dei parametri del modello nell’ipotesi di distribuzione Gaussiana generalizzata, sia nel caso monovariato che multivariato, partendo dalle osservazioni sul sistema fisico in esame.
DALPIAZ, Giorgio
D'ELIA, Gianluca
File in questo prodotto:
File Dimensione Formato  
7_PhD_Thesis_Soave.pdf

accesso aperto

Descrizione: Tesi
Tipologia: Tesi di dottorato
Dimensione 14.25 MB
Formato Adobe PDF
14.25 MB Adobe PDF Visualizza/Apri

I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/2490999
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact