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P R E FA C E

I graduated cum laude in 2018 in Mechanical Engineering at the University of
Ferrara discussing the thesis entitled "Tavola vibrante triassiale: validazione
di procedure per test dinamici accelerati con vibrazioni random gaussiane"
under the supervision of Eng. G. D’Elia. Immediatly after, I joined with a
postgraduate fellowship the research group leaded by Prof. G. Dalpiaz at the
same university. After eight months I started my Ph.D. in Engineering Science
still under the supervision of Prof. G. Dalpiaz.

During the postgraduate fellowship I have been introduced on the research
field of the vibration-based diagnostics of rotating machines. In particular, my
study has been focused on blind deconvolution methods for the identification
of machine faults. In this contest, together with Eng. M. Buzzoni, I re-wrote
some existing BD indicators exploiting their cumulative value in order to make
them more suitable for industrial applications. This research work led to the
publication of one conference papers [1] and one journal paper [2].

In the first year and half of my Ph.D., my research activity has been focused
on the development of a new indicator that combines the BD theory with the
cyclostationarity for the detection of machine faults exhibiting this behaviour.
The new criterion exploits the Fourier-Bessel series expansion in order to reduce
the computational time required by the algorithm due to its mathematical
nature more compatible with the fault vibration signature. This aspect increases
the suitability of the BD for real time analysis, pivotal aspect in the nowadays
industrial scenario. The preliminary results of this study have been presented
at the Surveillance 2019 conference in Lyon [3] whereas the complete research
work, including the extension for systems operating under variable speed
regimes, has been published in Mechanical System and Signal Processing
journal [4].

The results obtained during the first part have been considered as the starting
point for the last part of my Ph.D. The proposed indicator has been exploited
as the observation for developing a prognostics model that aims to evaluate
the damaging level of a mechanical system during its operating life. My
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research activity in this field has been mainly focused on the Hidden Markov
Models that divide the component’s useful life into a discrete number of state
related each other in a probabilistic way. The idea of hidden states regards the
probabilistic law that relates the observations, i.e. the considered indicator’s
values, and the state sequence, i.e. the health condition of the system at a
given time instant. These relations are usually defined for a specific data
distributions, e.g. Gaussian. Consequently my research in this field has been
focused on the definition of a generalized law that enables the consideration
of several different laws depending on the value of some parameters. The
resulting model has been validated through several run-to failure dataset
regarding both laboratory test and real industrial case studies.

Apart from my Ph.D. research topic, I also had the chance to perform several
experimental activities; in particular I studied a novel laser triangulation sensor
in order to demonstrate that it can be considered as a contactless alternative to
accelerometers for the main vibration-based analyses [5]. At the same time I
had the opportunity to collaborate with some companies on the resolution of
industrial problems both directly with the measurement performed or through
numerical models validated through the experimental test conducted [6].
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1
I N T R O D U C T I O N

1.1 diagnostics and prognostics in the industrial scenario

The topic of this thesis is the diagnostics and prognostics of rotating machines
through the application of signal processing techniques directly on the raw
vibration signal measured on the system. Diagnostics and prognostics are
fields related each other but with significant different meanings. The term
diagnostics refers to the detection and identification of defects occurring in
a mechanical system during a certain working phase. On the other hand,
the prognostics aims to estimate the Remaining Useful Life (RUL), i.e. the
residual time to failure, through the analysis of the trend of some diagnostic
indicators in order to avoid unnecessary system’s shutdowns for maintenance
operations. The application of vibration-based analysis is founded on the
idea that any modifications inside the considered system directly reflects on
the vibration signature, e.g. in form of modification of signal amplitude or
frequency content. Consequently, the basis concept behind the vibrational
diagnostics and prognostics is the extraction of any information regarding
the health state of the system exploiting some signal processing techniques
directly on the vibrations generated by a working machine .

In the last years, this kind of analysis attracted the industrial scenario due
to some points of strength: the capability of capture the high dynamics of the
most common rotating machines and the non-intrusive nature of vibration
measurements, pivotal aspect for the end of line quality control operations.
Moreover, taking into account complex systems, e.g. vehicle transmissions,
composed by several different elements, e.g. shafts, gears or bearings, it is
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possible to extract information about them just from a single accelerometer,
even though their different natures [7].

On the other hand, the exploitation of vibrational analysis in industrial
environment may represent a challenging task. In fact, the information to be
extracted from the raw vibration signal are strongly masked by several inter-
ferences like background noise or other contributions related to the motion
of the system. Another limitation of this analysis is related to the "physical"
filter intrinsic to each structure. In fact, the analysis aims to identify the fun-
damental components related to the excitation given by the rotating elements
that compose the system. Unfortunately, the sensor measures the response
of the system to the excitation instead of the excitation itself. Each structure
acts as a filter that amplifies the excitation only in some frequency ranges, i.e.
the natural frequencies, and consequently the measured response is strongly
affected by this filter. Directly related to this aspect there is the problem of the
transducer position: due to the filter given by the structure, the sensor has to
be placed as close to the excitation as possible, e.g. near the bearing cage where
the forces are discharged, in order to minimize the effect of the structure.

The aforementioned issue can be overcome (or at least mitigated) by ma-
nipulating the raw data in order to extract the machine related information
minimizing the effect of the structure and the other interferences. In this direc-
tion, in the last decades the researches worked in order to make the classical
signal processing techniques suitable for the study of mechanical systems.
Several techniques have been developed in the last years, each one fitted for a
particular type of signal (stationary, non-stationary, periodic, cyclostationary,
etc.). The increasing number of industrial cases considered for the validation
of the proposed methods clearly demonstrates the greater attention posed
by the academic world to the main industrial needs, e.g. the detection of
incipient faults and the prediction of the RUL for increasing the effectiveness
of predictive maintenance. Nowadays, the vibration signal processing covers
an extended spectrum of applications and consequently a brief overview of
the most common approaches and their applications should be explained.
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1.2 rotating machines diagnostics and prognostics through

vibration signals

In the rotating machines field, gears and rolling element bearings represent
fundamental components. In fact, faults occurred on these components lead
to dangerous operating conditions, e.g. overheating or high vibrations, or to
catastrophic failures in the worst case. For this reason, the identification of
incipient fault or, even better, the prediction of possible fault appearance have
become pivotal in the diagnostic and prognostic fields.

Gear and bearing faults can be divided into two different families: dis-
tributed, i.e. faults that affect the entire component and thus distributed over
one shaft revolution, and localized, i.e. faults concentrated in one point like
cracks, spalls and pits. This thesis focuses on the latter one. From the gear
standpoint, typical localized faults are represented by spalls, pitting on the
tooth surface, cracks on the tooth root or manufacturing errors [8]. On the
other side, bearing faults may affect both rolling elements and races in form of
pitting, brinelling or spalls [9].

Localized faults reflect on significantly changes into the vibration signals
measured on gears and bearings due to the appearance of non-stationary
components in form of a series of transients, e.g. the train of impulses related
to the impact between a race fault and the rollers in a damaged bearing.
Clearly, these transients are generated in a dissimilar way for bearings and
gears, due to the different natures of the physical phenomena that lead to
the localized faults. Speaking about gears, the vibration signature related
to two mating gears should contain only the tooth meshing frequency and
its higher harmonics [10, 11]. However, usually the signal presents other
contributions due to possible faults or not perfect gear involute profiles related
to a low quality manufacturing. The target of the vibration-based diagnostics
is the identification of these undesired components even if strongly masked
by other contributions such as the gear mesh, speed fluctuation effects or
background noise. In this context, a suitable methodology for modelling the
system response to a localized gear fault is represented by the amplitude/phase
modulation with an impulsive component [12, 13].

Moving to bearings, the fault detection and identification is even more
challenging than in the gear case due to their very weak vibration levels
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with respect to gear mesh related one. The classic deterministic approach for
local bearing faults modelling takes into account a Dirac comb, i.e. the ideal
impulsive excitation related to the impacts between rolling elements and the
fault, convolved with the transfer function of the structure [14]. However, in
real cases the impulsive pattern is hidden by modulation effects and variable
transfer path [15].

Moreover, it has been demonstrated that the fault related impulse train is
not a purely periodic signal but presents random slip effects that reveal the
need for a new perspective in the bearing diagnostics field. In this direction, in
the last decade the theory of cyclostationarity demonstrated its suitability for
describing and analysing bearing related vibration signatures (but it can be
also applied on gears and many other mechanical systems). The randomness
of the occurence rate and the pulses amplitude have been considered by
Antoni and Randall [16, 17] as the base of a new stochastic model of bearing
vibration signals. In particular, it has been demonstrated that bearing fault
signatures exhibit random hidden phenomena with cyclic behaviour that can
be described as a second-order cyclostationary (CS2) process. In the same way,
the cyclostationarity demonstrated to be a suitable tool for modelling localized
gear faults. In fact, Capdessus et al. [18] proved that localized gear faults can
be described as a first-order cyclostationary (CS1) process as well as a CS2 one.

Over the years, several approaches for the detection of localized faults on
both gears and rolling element bearings have been presented in the state of art
regarding diagnostics and prognostics of mechanical systems. The revolution
represented in the diagnostics field by the cyclostationary theory allows the
classification of these signal processing techniques into two different families:
the cyclostationary strategies and the others. Regarding the gear diagnostics,
the following classical strategies have to be mentioned: scalar indicators [19],
e.g. kurtosis, order tracking approaches [20], Time Synchronous Average (TSA)
[21, 20], demodulation analysis [22], time-frequency techniques [23], cepstrum
[24], Blind Deconvolution (BD) methods [25], Auto Regressive (AR) models
[26]. From the bearing diagnostics point of view, the envelope analysis (better
known as the high-frequency resonance technique) [27] can be still considered
as the most common and exploited processing approach for the rolling element
bearing fault detection. An exhaustive review about bearing fault diagnosis
literature can be found in [28].
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Moving to the cyclostationary family, several techniques are worth men-
tioning: the signal decomposition into CS1 part and CS2 part [29], spectral
correlation [30], spectral coherence [28], Cyclic Modulation Spectrum (CMS)
[31], Squared Envelope Spectrum (SES) [32] and scalar indicators such as the
indicators of cyclostationarity (ICS) [33]. Despite the deep changes introduced
by the theory of cyclostationarity, it is possible to find several connections with
the classic approaches. Between them it has to be remembered the connection
between the integrated spectral correlation and the envelope analysis [34],
the relation between spectral correlation and spectral kurtosis [35] and the
comparison between TSA and first order cyclostationarity [18].

This brief overview aims to present the most common and exploited signal
processing techniques for vibration based fault diagnosis. A more general but
exhaustive dissertation about this topic can be found in Ref [7].

1.3 research objectives

This research investigates two different aspects: the fault identification directly
from noisy raw vibration signals and its possible application for the definition
of a prognostic model for the assessment of the damaging level and the
prediction of the RUL of a mechanical system.

Regarding the first field, among the diagnostic approaches proposed in
Section 1.2, the BD enables the extraction of the fault related signature from
a noisy observation through an iterative or direct algorithm. This method
permits to overcome the issue related to the structure’s transfer function under
the hypothesis of Single Input Single Output (SISO) system (typical situation
in the mechanical field). Only recently, the cyclostationary theory has been
combined to the BD for improving its diagnostic effectiveness when applied
to rotating machines. However, there are some open questions regarding this
particular approach:

• Is it possible to reduce the computational cost required by the BD without
losing the diagnostic capability of the cyclostationarity?

• Is it possible to exploit a non stationary series expansion for defining a
novel criterion that better fits the fault related vibration signature?
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• What is the improvement given by a modulated series expansion with
respect to the classic Fourier transform?

In this direction, the target of this work is the definition of a BD criterion that
rewrites the existing cyclostationary BD indicator through a modulated series
expansion. As a result, the proposed indicator better fits the impulsive nature
of the fault related vibration signals. Consequently, the computational time is
reduced in order to enable the diagnostics as real time as possible, meeting the
nowadays industrial needs.

Moving to the prognostic field, the Hidden Markov Models (HMMs) allows
the estimation of the health condition of a system through the probabilistic
analysis of one or more sets of physical observations, i.e. trends of some diag-
nostic indicators that describe the damaging level. These observations present
a distribution that can be represented by a mixture distribution composed by a
number of distributions equal to the number of model states. On this ground
some aspects may be detailed studied:

• Do the observation distributions among the different model states belong
to the same family?

• Is it possible to consider a generalized distribution in order to take into
account the distribution modifications during the working life?

• What is the improvement given by a generalized distribution with respect
to a single distribution, e.g. Gaussian or Bernoulli?

In this contest, this thesis proposes a novel HMM based on a generalized
Gaussian distribution in order to consider the modifications of the observation
distribution through the values of the distribution parameters. The better
fitting quality of the model distribution leads to a more accurate estimation of
the actual health state and to the prediction of the residual life until the final
system failure.

All the aforementioned questions have been carefully examined in this thesis.
The possible answers are discussed and demonstrated through the analysis of
both simulated and real vibration signals.
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1.4 organization of the thesis

This thesis is organized into 5 chapters, where one diagnostic approach for
rolling element bearing fault identification and its application as observation
for a new prognostic model are described and discussed. For each methodology,
after the mathematical explanation, an exhaustive experimental validation is
illustrated, taking into account both simulated signals reproducing the classic
fault related signature and real case studies.

Before starting with the definition of the proposed diagnostic and prognostic
methods, in Chapter 2 the bearing test bench developed at the University
of Ferrara is described. Any diagnostic technique requires an experimental
validation through tests as similar as possible to the real operating conditions of
the system under observation. In this direction, the development of an internal
test bench is a pivotal step for the research quality improvement. In this
chapter, the test bench design process is illustrated, pointing the attention on
the structural and vibrational issues encountered and their resolution through
the classic vibration based analyses, e.g. operational runup and Experimental
Modal Analysis (EMA). Later in Chapter 2, the experimental tests performed
on the previous described test bench and exploited for the validation of all the
methodologies presented in this thesis are described, highlighting the target
and the typology of dataset obtained.

In Chapter 3, a novel BD indicator defined by combining the theory of the
cyclostationarity with the Fourier-Bessel Series Expansion (FBSE) is proposed.
The proposed indicator tries to improve the effectiveness of the Generalized
Rayleigh Quotient based iterative algorithm known as cyclostationary maxi-
mization blind deconvolution (CYCBD) through the exploitation of the FBSE
due to its mathematical nature being more suitable for impulsive signals. The
comparison between the two methods is carried out considering both synthe-
sized and real signals. The simulated signals reproduce the typical fault related
impulsive pattern of a damaged bearings under both constant and variable
speed regimes. The target of this validation is to prove the lower computation
time required by the proposed algorithm derived from the lower number of
frequency harmonics needed by the FBSE for the signal reconstruction. The
real signal driven validation concerns both data acquired on the University
of Ferrara test bench and datasets provided online by the NASA Prognostic
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Data Repository. This part aims to illustrate the sensitivity of the proposed
criterion on the damage severity, in order to highlight its suitability also from
the prognostic point of view, enabling its exploitation as observation for the
prognostic model described in the following chapter.

The second part of this thesis, named Chapter 4, starts from the BD indicator
described in the previous chapter in order to define a new prognostic model.
The presented model belongs to the family of the Hidden Markov Models
(HMMs), where the operating life of a mechanical system is divided into a dis-
crete set of states representing different damage severity levels. The transition
of the system between the states has a probabilistic nature. The belonging to
one particular state depends on one or more indicators describing the health
conditions, i.e. the observations, through a statistic relation. Usually this re-
lation follows a particular statistic distribution, e.g. Gaussian, Bernoulli, etc.,
for each state. However, the observation distribution may change with respect
to different state. The idea of the proposed model is to consider a generic
distribution, i.e. the Generalized Gaussian Distribution (GGD), that enables
the distribution changing for different states only depending on variable distri-
bution parameters. The proposed model for the 1-D case is validated through
two run to failure tests performed on both bearings (University of Ferrara
test bench) and planetary gearboxes (real industrial application). The model is
then extended to multivariable distributions taking into account other classic
diagnostic indicators and validated through the aforementioned datasets.

Finally, Chapter 5 outlines the concluding remarks, summarizing results and
pivotal aspects come to light in the thesis. Particular attention is pointed out
on the practical implication related to the proposed results, highlighting their
possible applications in the 4.0 industry environment.
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2
B E A R I N G T E S T B E N C H AT T H E E N G I N E E R I N G
D E PA RT M E N T O F T H E U N I V E R S I T Y O F F E R R A R A

2.1 introduction

A possible measure of the quality of the academic research, in particular in
the engineering field, is given by the possible implementation of its results
for the resolution of real issues run into in a particular environment. For this
reason, the entire scientific production in the industrial field, e.g. numerical
models, diagnostic methods and algorithms, prognostic models, etc., requires
an experimental validation carried out, if possible, directly on the physical
system object of the study. Unfortunately, the experimental campaigns can
not be usually performed directly on the real system during its operating
cycle due to the machine downtime needed for mounting the sensors and
running the planned tests (clearly incompatible with the idle time and costs
reduction at the base of the nowadays industrial scenario). In this direction,
even more research laboratories are moving to the construction of internal
test benches and the design of dedicated tests that try to reproduce the real
system’s operating conditions.

Over the years, several datasets have been proposed by both academic and
private laboratories. From the rolling element bearings point of view, the most
famous and heavily exploited by the scientific community is the one proposed
by the center for Intelligent Maintenance Systems (IMS) of the University
of Cincinnati [36]. The test bench is composed by four double row bearings
Rexnord ZA-2115 mounted on the same shaft driven by an AC motor coupled
via rub belts. A radial load of 27.7kN is applied on the shaft (and consequently
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on bearings) in the mid point by a spring mechanism. The run-to-failure tests
are performed at constant speed of 2000rpm and the vibration signals are
measured through mono-axial accelerometers installed on the bearing housing.
Another bearing dataset that is worth mentioning is the Case Western Reserve
University one [37]. The test rig consists of an electric motor coupled with a
dynamometer. The SKF and NTN bearings under test support the motor shaft
and single point faults were introduced into them through an electro-discharge
machine. Several defects size are tested and the vibration signals are measured
with piezoelectric accelerometers placed on the motor housing. An interesting
overview about bearing test benches can be found in Ref [38].

Moving to the gearboxes field the dataset supplied by the Southern Methodist
University of Dallas [39] should be remembered. The tested gearbox is driven
by an electric motor and coupled to a disk brake system in order to increase the
contact forces between teeth. The dataset contains vibration signals for three
different conditions: healthy, chipped tooth and distributed wear. The test is
performed at 1420rpm and the vibrations are measured on the gearbox case
through piezoelectric accelerometers. Other examples of interesting gearbox
test rigs can be found in Ref [40, 41]. In the same direction, at the Engineer-
ing Department of the University of Ferrara, a gearbox test bench has been
designed [42]. The investigated gearbox is composed of two stages of helical
gears driven by an electric motor and coupled with a load motor. The first
stage gear has been milled in order to create four different size of gear tooth
spall. The vibration signal is acquired through piezoelectric accelerometers
mounted on the gearbox case in proximity of the support bearings of the input
shaft.

The diagnostic and prognostic methods proposed in this thesis are mainly
developed for the bearing fault identification (they can be easily extended for
application on gears and other mechanical systems). For this reason during
the data required for the experimental validation had to be measured on a
dedicated test rig. This particular need led to the design of a new bearing test
bench that is described in detail in this chapter.
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(b)(a)

Figure 1: Bearing test bench at the University of Ferrara: (a) Overall system and (b)
Exploded view of the tested bearing house

2.2 bearing test bench design

Starting from the model of the aforementioned test rigs, the test bench at the
University of Ferrara has been designed in order to reproduce as better as
possible the real bearing operating conditions. As shown in Fig.1(a) the tested
bearing is cantilever mounted on a shaft supported by other two bearings
and driven by an electric motor. The load is regulated by a spring system and
applied on the tested bearing through a lever. The instantaneous applied load
is measured with a cell load insert between the piston (installed at the end of
the lever) and the bearing housing (see Fig.1(b)).

One of the fundamental aspects to be controlled during bearing experimen-
tal tests is the consistency of the load for the entire test length due to its direct
influence on the fault detection effectiveness [15]. Taking into account real
system, even with high manufacturing quality, the shaft unbalance combined
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(b)

(a)

Figure 2: Effect of damper applied on lever system: (a) Point FRF on the beam extrem-
ity and (b) Spectrum of load applied on the tested bearing

with the support bearing clearances and possible shaft misalignment lead
to variable induced forces with the periodicity of the shaft rotation [43, 44].
The main drawback related to the load application through a lever system
is the possible presence of beam natural frequencies that may be excited by
the aforementioned variable forces in the low frequency range, i.e. lower than
100Hz. This excitation is consequently increased by the frequency dependent
structure filter nearby the resonances leading to a raising fluctuation of the
load applied on the tested bearing. This matter is clearly explained in Fig.2: the
point Frequency Response Function (FRF), i.e. the ratio between the spectra of
the response and the excitation measured in the same point during an EMA,
of the beam presents a natural frequency at 90Hz (thin line in Fig.2(a). Conse-
quently the main frequency content of the load signal is related to the third
harmonic of the rotational frequency (thin line in Fig.2(b)), taking into account
a fundamental one of 30Hz. After the EMA, this resonance has been found as
related to the first bending mode of the beam in the direction of application of
the load. In order to mitigate this phenomenon, a damper has been added in
this direction at the extremity of the lever reducing the load fluctuation during
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(b)(a)

Figure 3: Run-to-failure test related defects: (a) Campaign 1 and (b) Campaign 2

the shaft revolution. The effect of the damper is illustrated in Fig.2 with the
bold lines: the natural frequency is translated at 140Hz with lower amplitude
and wider peak due to the increased damping. The resulting load spectrum
presents only significant amplitude for the fundamental rotational frequency
and the overall load variation, i.e. the sum of all the harmonics in Fig.2(b), is
strongly reduced.

The above presented test bench allows to perform several bearing test
typologies, e.g. run-to failure, stationary test, i.e. under constant speed, and
variable speed test. The datasets exploited for the validation of the algorithm
and the model proposed in this work are described in detail in the following
section.

2.3 datasets exploited in this thesis

The aforementioned test rig has been exploited for carrying out several exper-
imental tests that can be divided into two main groups: run-to-failure tests,
i.e. system under constant operating condition leading to the appearance of
natural defects, and stationary test with artificial defects of different sizes.
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(a)

(c)

(b)

Figure 4: Artificial outer race defects: (a) 0.8mm, (b) 1.6mm, (c) 2.4mm

Both data typologies have been taken into account for the validation of the
methodologies proposed in this thesis.

Between the first family, two different experimental campaigns have been
considered. Both datasets have been measured for system operating at 2400rpm
with a load of 3000N applied on the tested bearing type NSK 1205ETN9.
The vibration signal has been measured through a mono-axial piezoelectric
accelerometer mounted in radial direction on the bearing housing and acquired
continuously by means of a NI cRio system with a sample frequency of 51.2kHz.
The results of the two tests have been significantly different:

• Campaign 1 has been stopped after 21 days and an outer race fault has
been detected as shown in Fig 3(a).

• Campaign 2 ended after 13 days due to a deep rolling element defect
appeared on several rollers (see Fig 3(b)).

These datasets, hereafter called Dataset 1.1 and Dataset 1.2, respectively, will be
exploited in Chapter3 in order to demonstrate the suitability of the proposed
indicator for the assessment of the bearing damage level and in Chapter4 for
the training process and the validation of the proposed prognostic model.
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2.3 datasets exploited in this thesis

The sensitivity of the novel BD indicator to the fault dimension will be
demonstrated through another dataset regarding three artificially damaged
bearings type NSK 1205ETN9. Rectangular shaped single point faults of differ-
ent dimension, i.e. 0.8mm, 1.6mm, 2.4mm, have been introduced on the outer
race through an electro-discharge machine as shown in Fig 4. The operating
parameters are the same already described for the first two datasets (rotational
speed of 2400rpm and load of 3000N applied of the tested bearing) and the
vibration signals have been acquired with a sample frequency of 51.2kHz for
30s with a LMS SCADAS acquisition system. This dataset will be referred as
Dataset 2 in the following chapters.
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3
FAU LT I D E N T I F I C AT I O N T H R O U G H F O U R I E R - B E S S E L
B A S E D B L I N D D E C O N V O L U T I O N

3.1 introduction

Nowadays, one of the most challenging tasks in the diagnostic field is repre-
sented by the identification of impulsive fault related patterns due to their
weakness, in particular in the early stages of the damaging process. For this
reason these signatures are often strongly masked by background noise, me-
chanical interferences, e.g. meshing components, and the effect of the dynamic
response of the structure that dominate the raw acquired signals. In fact,
as already mentioned in Section1.1 each excitation given by a mechanical
component is filtered by the Impulse Response Function (IRF) of the system.
Unfortunately, usually this physical filter is unknown and consequently it is
impossible to isolate the fault related excitation from the measured signal. In
this contest, BD techniques allow the extraction of impulsive patterns directly
from noisy observations under the hypothesis of linear time-invariant system.

The basis idea of the BD consists in modelling a general phenomenon as
the sum of several sources convolved with different filters and an additive
background noise. This concept may be applied to several fields such as
telecommunications, image processing and rotating machinery and for this
reason BD has been widely exploited in the last decades. The first documented
BD method has been proposed by Wiggins [45] in 1976 in the seismic signal
processing field. This method, known as Minimum Entropy Deconvolution
(MED), aims to recover an impulsive source through an iterative algorithm
based on the maximization of the kurtosis (also named Varimax norm) related
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to the deconvolved signature. In the same direction, Cabrelli [46] proposed an
alternative algorithm, known as Optimal Minimum Entropy Deconvolution
(OMED), that enables the direct resolution of the BD problem exploiting a
novel indicator, called D-Norm. The main issue of the application of MED in
the rotating machine diagnostics field is directly related to the mathematical
nature of the kurtosis. In fact, both the iterative and the direct algorithm
tend to deconvolve a single peak instead of a train of impulses, typical signal
waveform of faulty rotating systems.

In order to overcome this drawback and increase its effectiveness for diag-
nostic purposes, over the years MED has been combined with other signal
processing techniques. From the gear diagnostics standpoint, Endo and Randall
[25] proposed the application of MED directly on the AR residual in order to
enhance the impulsive pattern inside a vibration signal. This method has been
later exploited for discriminating gear tooth spalls from tooth root cracks by
Endo et al. [47]. In the same field, Zhang et al. [48] proposed the combination
of MED and Continuous Vibration Separation (CVS) for planetary gearboxes
analysis. Moving to the bearing diagnostics, Sawalhi et al. [49] presented a par-
ticular application of MED driven by the maximization of the spectral kurtosis
on the envelope spectrum. The spectral kurtosis has been also considered as
BD indicator by He et al. [50] for the identification of multiple bearing faults.

Despite the MED improvements above described, the need for a method
fitted for the rotating machine diagnosis led to the definition of novel BD
criteria based on kurtosis and D-Norm but taking into account the fault period
related to the system revolution. McDonald et al. [51] defined a new BD
algorithm, known as Maximum Correlated Kurtosis Deconvolution (MCKD),
based on the so called correlated kurtosis, i.e. a redefinition of the kurtosis
that takes into account an a priori known period between the peaks. Based on
the same idea, the Multi Point D-Norm has been proposed by McDonald and
Zhao [52] as the indicator for a new BD method called MultiPoint Optimal
Minimum Entropy Deconvolution Adjusted (MOMEDA). Both these methods
are driven by the idea to deconvolve a periodic train of impulses in order
to better fit the characteristic waveform of faulty rotating machines. In this
direction, Miao et al. [53] improved the MCKD for bearing fault detection
through the automatic pulse period estimation by using the auto-correlation
function of the envelope signal.
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All these indicators share the mathematical idea of identifying the fault
appearance through the measure of the data distribution departure from the
ideal Gaussian condition that characterizes vibration signals. However, as
mentioned in Sec.1.2, in the last decades the relevance of cyclostationarity
for rotating machinery diagnostics has been widely recognized [29]. For this
reason, the coexistence of impulsiveness, i.e. the deviation from the ideal
Gaussianity, and cyclostationarity, i.e. the deviation from the ideal stationary
condition, inside the fault related signature needs to be considered in order to
enhance the diagnostic capability of BD. This fundamental relation has been
exhaustively illustrated by Antoni and Borghesani [54] from a statistical point
of view.

Coming back to BD, although the correlated kurtosis can be interpreted as a
cyclostationary criterion, it has been defined empirically, without an explicit
investigation about its statistical nature [2]. In a different way, MOMEDA can
not be seen as a cyclostationary BD method being it based on a purely periodic
indicator that leads to the extraction of a train of equispaced impulses, without
considering the random slip effects typical of cyclostationary signatures. In
order to fill the existing gap between BD and cyclostationarity, recently Buzzoni
et al. [55] proposed a novel BD iterative algorithm, called CYCBD. This method
aims to extract the source that maximizes the ICS, i.e. the pattern that exhibits
the maximum cyclostationary behaviour, through the iterative resolution of an
eigenvalue problem based on the generalized Rayleigh quotient. The powerful
of this method is represented by its adaptability to other criteria as well as the
enhanced effectiveness given by the direct exploitation of cyclostationarity.

The impulse like nature of a machine fault reflects on waveforms composed
by a train of fast amplitude modulations, i.e. transients with variations of the
signal’s energy localized in an extremely narrow time span. The mathematical
nature of the Fourier Series Expansion (FSE) on which the ICS is based, i.e. the
sum of constant amplitude sinusoidal functions, may no longer represent the
best fitted transform for describing localized faults, due to the high number
of series term required [56]. This research tries to enhance the diagnostic
capability of the ICS through the exploitation of the FBSE, being it based on
amplitude modulated sinusoidal functions that decay in time according to a
specific law [57, 58]. The mathematical base of the novel BD criterion allows
the reduction of the computational time due to the lower number of series
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terms, i.e. the number of fault frequency harmonics required for the source
estimation, without losing the effectiveness of the ICS.

Firstly, a brief overview about some BD generalities with a particular fo-
cus on the cyclostationarity based method is given. Then the proposed BD
indicator is described, highlighting the possibility of writing it in form of a
generalized Rayleigh quotient through a specific weighting matrix. The per-
formances of the novel method, named Fourier-Bessel Blind Deconvolution
(FBBD), are compared with the CYCBD taking into account both simulated
signals and real measured signals. The analysis of synthesized signals in the
time domain, i.e. simulating constant speed regimes, as well as in the angular
domain, i.e. representing variable regimes, aims to demonstrate the effect of
the different transform natures on the number of harmonics required for the
reconstruction of the target source. The robustness of the method is studied
through the analysis of the filter length effect and the release from the a priori
knowledge of the fault period. The analysis of real signals from both academic
test benches and real industrial examples illustrates the diagnostic capability of
the proposed indicator, pointing the attention on the sensitivity to the damage
severity.

3.2 problem statement

In general, the vibration signal acquired from a SISO linear time-invariant
system, hereafter called x, can be seen as the linear sum of three different
contributions as shown in Fig. 5: an impulse-like pattern s0 related to the
excitation given by a localized fault, a pure periodic component p (e.g. the gear
mesh) and a Gaussian background noise n, all convolved with the respective
IRFs, such as:

x = s0 ∗ gs + p ∗ gp + n ∗ gn (1)

where, gs, gp and gn are the IRFs related to s0, p and n, respectively, and *
refers to the convolution operation. For the sake of clarity, from now bold
capital letters refer to matrices and bold lowercase letters refer to vectors. The
target of BD is the estimation, i.e. the deconvolution, of the fault related input
source s0 directly from the noisy observation x, viz:

s = x ∗ h = (s0 ∗ gs + p ∗ gp + n ∗ gn) ∗ h ≈ s0 (2)
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n
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s0 gs
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+ x h s

Figure 5: General scheme of BD for SISO mechanical system

where, s is the deconvolved source and h is the inverse filter, assumed to be a
Finite Impulse Response (FIR) filter, that highlights the impulsive pattern s0
minimizing the other contributions, i.e. p and n. A convenient way to express
the convolution operation for discrete signals in matrix form is the following:

s = Xh (3a) s[0]
...

s[L− 1]

 =

x[N− 1] . . . x[0]
... . . . ...

x[L− 1] . . . x[L−N− 2]


 h[0]

...
h[N− 1]

 (3b)

where L and N are the number of samples of s and h, respectively.

The mathematical problem described in Eq.2 is based on some simple as-
sumptions: the samples of s0 are independent identically distributed random
variables exhibiting a specific statistical property (e.g. impulsiveness or cyclo-
stationarity), the system is linear time-invariant and all the other contributions
are additive and do not share the same characteristics of the target source to
be deconvolved. The weak point of the problem is related to the fact that the
IRFs are not available. This issue can be overcome by considering an arbitrary
criterion that leads to a solution based on an a priori assumption, e.g. assuming
that a certain statistical property is maximized by the desired source. If the
frequency contents of the different IRFs are not overlapped, i.e. they exhibit
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different statistical properties, the estimation of the inverse filter h leads to
the maximization of the researched signature. It is important to underline
that the main drawback of BD methods is their inability to recover the real
source magnitude, i.e. they are amplitude invariant methods. On the other
hand, BD allows the extraction of informations regarding the waveform, in
particular taking into account the fault related characteristics, pivotal aspects
for diagnostic purposes.

3.3 overview about cyclostationarity based blind deconvolu-
tion

As stated in Sec.3.1, the source related statistical property maximized by the
classic BD methods, i.e. MED, OMED, MCKD and MOMEDA, is related to
the data deviation from the ideal Gaussian conditions, i.e. impulsiveness,
without taking into account the deviation from stationarity, i.e. the cyclosta-
tionarity, typical of rotating machines fault related signatures. In order to fill
this gap, Buzzoni et al. [55] proposed a new BD methods, named CYCBD, that
tries to enhance the BD diagnostic capability through the exploitation of the
cyclostationary behaviour that describes localized faults on rotating systems.

In general, a process can be defined as cyclostationary if some statistical
properties exhibit a periodic behaviour. Several authors [29] demonstrated
that the vibration signal from faulty rotating machines is well modelled as a
cyclostationary process. In particular, real mechanical signals are composed
by a mixture of CS1 and CS2 processes. The CS1 part is related to the periodic
contribution and describes the deterministic part of the signal. The CS2 part is
the random part, i.e. the residual signal, described by a periodic autocorrelation
function. In this contest, it is possible to define the cyclic frequency as the
carrier frequency of an hidden periodicity inside the signal energy, usually
resulting from physical phenomena such as faulty gears or bearings. For a
generic discrete signal the cyclic frequency can be defined as:

α =
k

T
(4)

where k is the sample index and T is the cyclic fault period. The CYCBD
method is based on the maximization of the cyclostationary behaviour through

22



3.4 proposed indicator

the estimation of the source with the maximum ICS. This indicator has been
proposed by Raad et al. [33] and its effectiveness for diagnostic purposes has
been exhaustively studied and applied to several mechanical components [33,
59]. The second-order ICS is defined as:

ICS2 =

∑
k>0

|cks |
2

|c0s |
2

(5)

with

cks =
1

L−N+ 1

L−1∑
n=N−1

|s[n]|2e−j2π
k
T n (6a)

c0s =
||s||2

L−N+ 1
(6b)

Note that the first considered sample is N− 1 instead of 0 in order to reduce
possible numerical artifacts on the reconstructed source related to the convo-
lution operation [52]. Buzzoni demonstrated how the ICS2 can be written in
form of Generalized Rayleigh Quotient as:

ICS2 =
hHXHWXh

hHXHXh
=

hHRXWXh
hHRXXh

(7)

where the weighting matrix W contains all the cyclic frequencies α of inter-
est. It can be noticed that the maximization of the ICS2 with respect to the
filter coefficient h corresponds to the eigenvector associated to the maximum
eigenvalue of the following eigenvalue problem [60]:

RXWXh = RXXhλ (8)

where, λ is equivalent to the maximum ICS2. The CYCBD is based on the
iterative resolution of the eigenvalue problem described in Eq.8 finalized to
the maximization of λ, i.e. the ICS2.

3.4 proposed indicator

In this section, after a brief overview about the mathematical nature of the
FBSE and its main characteristics, the novel BD criterion is proposed and
discussed.
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3.4.1 Fourier-Bessel series expansion

The mathematical complexity of the CYCBD directly reflects on an higher
computational time required for the analysis with respect to the classic BD
methods, based on the maximization of simple statistics like the kurtosis or the
D-Norm. This disadvantage is completely balanced by the higher diagnostic
capability of this method given by the direct exploitation of the cyclostationarity
for the reconstruction of the fault related excitation. The idea at the base of
this research activity is to preserve the diagnostic effectiveness of the CYCBD
improving it through the reduction of the computational time given by the
redefinition of the basis indicator. This aspect is pivotal in order to make
the BD more suitable for real time condition monitoring, going towards the
nowadays industrial needs.

Considering the impulse-like nature of a localized fault related vibration
signature and the mathematical definition of the second-order ICS given in Eq.5,
the latter may not represent the best fitted indicator for the fault detection on
rotating machinery. In fact, it should be noticed from Eq.6a that the numerator
of the ICS2 is nothing but the Fourier transform of the instantaneous power
of the signal s. As a matter of fact, the FSE is perfectly fitted for periodic
signals, being it based on constant amplitude sinusoidal functions, and this
characteristics may contrast with the fast transient that describes the fault
appearance inside a vibration signal. Applying this mathematical consideration
to the CYCBD, it entails a number of cyclic harmonics of α required for the
signal description that tends to increase inversely proportional to the transient
extension in time (or in angle, speaking about rotating machines). As a result,
the higher the number of considered harmonics, the higher is the number of
operations comprised into the algorithm, consequently leading to an increasing
computational cost.

According to this consideration, the use of a generalized series expansion, i.e.
based on modulated functions, may represent a suitable tool for speeding up
the analysis without losing the diagnostic capability reached by the cyclosta-
tionarity based BD. In this direction, the FBSE may represent a valid solution
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for better describing the fault related transients due to its non stationary nature.
For a generic time discrete signal x(n) the FBSE is defined as:

x(n) =

L∑
i=1

CiJ0

(βin
L

)
, n = 0, 1, ...,L− 1 (9)

where L is the length of x, J0 is the zero-order Bessel function and Ci are the
Fourier-Bessel coefficients, defined as follows:

Ci =
2

L2[J1(βi)]2

L−1∑
n=0

nx(n)J0

(βin
L

)
(10)

where J1 is the first order Bessel function and βi are the positive roots of
J0 = 0. The application of FBSE moves the analysis to the β domain that is
direct related to the frequency domain, i.e. the resulting domain for the FSE,
according to Schroeder [57]:

βi ≈
2πfiL

fs
(11)

where fs is the sampling frequency of x. The direct correlation between fre-
quency and β domain described in Eq.11 explains the suitability of FBSE for
vibration signal analysis (usually based on the study of the frequency content
of the signal) and justifies its application for diagnostic purposes in several
fields such as gears [56] and electric motors [61].

Eq.9 highlights the non-stationary nature of the FBSE given by the Bessel
function decay within the signal range L. According to the aforementioned
relation between transient duration and number of series terms, the FBSE
may need a lower number of harmonics for the estimation of the excitation
pattern. All these aspects allow the basis idea of the proposed BD indicator for
enhancing the BD suitability making the algorithm as real time as possible.

3.4.2 Fourier-Bessel based blind deconvolution criterion

As previously stated, the numerator of the ICS2 given in Eq.6a can be seen as
the Fourier transform of the instantaneous power of the signal s. Combining
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this aspect with the improvement achievable through the exploitation of mod-
ulated nature of the FBSE, the definition of the novel BD criterion starts from
the re-writing of Eq.6a through the FBSE, viz:

ckF =
2

(L−N+ 1)2[J1(βk)]2

L−1∑
n=N−1

n|s(n)|2J0

( βkn

L−N+ 1

)
(12)

According to the definition of cyclic frequency given in Eq.4, the roots of the
zero-order Bessel function can be expressed as:

βk =
2πkT (L−N+ 1)

fs
(13)

It has to be underlined how the fault related cyclic frequency is directly
considered inside the re-estimated numerator of the ICS2, named ckF , through
the roots βk enabling the fault detection through the FBSE. Now it is possible
to substitute Eq.12 and Eq.6b into Eq.5. Moving to the matrix form, the revised
form of the ICS2, hereafter called ICS2FB, is defined as follows:

ICS2FB =
4

(L−N+ 1)2|J1J
H
1 |
2

|s|2HJ0nJH0n |s|
2

|sHs|2
(14)

with

J0n =


J0

(
β1(N−1)
L−N+1

)
(N− 1) . . . J0

(
βK(N−1)
L−N+1

)
(N− 1)

... . . . ...

J0

(
β1(L−1)
L−N+1

)
(L− 1) . . . J0

(
βK(L−1)
L−N+1

)
(L− 1)

 (15a)

J1 = [J1(β1) . . . J1(βk) . . . J1(βK)] (15b)

where K is the number of considered cyclic frequency harmonics.

At this juncture, substituting Eq.3a in Eq.14 after a simple manipulation it is
possible to write the ICS2FB in form of generalized Rayleigh quotient as:

ICS2FB =
hHXHWXh

hHXHXh
=

hHRXWXh
hHRXXh

(16)
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where the weighting matrix W is given by:

W =


. . . 0

4J0nJH0n |s|2

(L−N+1)2|J1JH1 |2

0
. . .

 1
L−1∑

n=N−1
s[n]2

(17)

It should be noticed that the term inside the diagonal matrix comprises all the
periodic components of |s|2, i.e. the cyclic frequencies to be investigated.

As demonstrated by Buzzoni for the ICS2, the maximization of the ICS2FB
with respect to the filter coefficients h is equivalent to the maximum eigenvalue
of the generalized eigenvalue problem described in Eq.8. The proposed method,
hereinafter referred as FBBD, analogously to the CYCBD estimates the fault
related excitation source through an iterative algorithm summarized as follows:

step 1 : Assume a guess of h. The target source is an independent distributed
random variable and consequently a whitening filter is a good solution
for the initialization of h. At the same time, the convergence of the
method is strongly influenced by the presence of deterministic sources
(e.g. shaft unbalance, misalignment or gear mesh harmonics) that may
lead to an increasing number of required iterations. Thus, a suitable
solution for the computation of the whitening filter can be represented
by an AR model filter, e.g. estimating the filter coefficients by using the
Yule-Walker equations, in order to attenuate the predictable components,
return a flat spectral density and consequently simplify the convergence
of the method [26];

step 2 : Estimate the weighting matrix W through Eq.17 after the computation
of s through Eq.3a;

step 3 : Solve Eq.8 obtaining the maximum ICS2FB and the related filter coef-
ficients h;

step 4 : Repeat from Step 2 with the filter h computed in Step 3 until conver-
gence.
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3.4.3 Extension to the angular domain

It is a matter of fact that the angular speed of rotating machines in real
operating conditions often presents fluctuations around the constant working
target. Consequently, the periodicities hidden into the vibration signatures
should be investigated in the angular domain rather than in the time domain in
order to release the analysis from the rotational speed [29, 62]. In this direction,
the FBBD may be further enhanced for the rotating system diagnostics through
the extension of the proposed indicator into the angular domain.

As suggested by Borghesani et al. [63], it is possible to move from time to
angular domain avoiding resampling through a change of variable starting
from the measure of the instantaneous speed or the instantaneous angular
position. According to this methodology, under the assumption of time/angle
dependent signal the ckF can be rewritten as:

ckF =
2

ΘΘ̇J21(βk)

L−1∑
n=N−1

θ(n)s(n)J0

(βkθ(n)
Θ

)
θ̇(n) (18a)

Θ =

L−1∑
n=N−1

∆θn (18b)

Θ̇ =

L−1∑
n=N−1

θ̇(n) =
Θ

∆t
(18c)

The positive roots of the zero-order Bessel functions may be expressed in the
angular domain by dividing both numerator and denominator of Eq.13 by the
rotational frequency, viz:

βk =
2πΩk(L−N+ 1)

M
(19)

where Ωk is the cyclic order and M is the maximum investigable order accord-
ing to the sampling frequency fs.

The extension of the FBBD to the angular domain through Eq.18 is hereafter
referred as AngleFBBD. The overall proof for moving from Eq.12 to Eq.18 can
be found in Appendix A.1.
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3.5 application on synthesized signals

This section provides the validation of the proposed BD method using simu-
lated signals that reproduce faulty signatures under both stationary and non
stationary operating conditions. The results are compared with those obtained
through the application of CYCBD in order to illustrate how the different
mathematical nature of the two criteria reflects on the number of considered
harmonics and thus on the computational time.

3.5.1 Description of simulated signals

The experimental validation through synthesized signals has been carried out
in Matlab environment exploiting also the code provided in Ref. [55]. The
simulation regards two signals reproducing typical fault related cyclostationary
patterns under both stationary conditions, i.e. system operating at constant
speed, and non-stationary conditions, i.e. angular speed fluctuating according
to a specific law:

1. train of cyclic impulses with Gaussian distributed amplitudes and addi-
tive Gaussian background noise (SNR = −18dB);

2. impulse train with cyclic frequency fluctuating according to a sinusoidal
law and additive Gaussian background noise (SNR = −18dB);

which, for simplicity, are called xtime and xangle, respectively. The parameters
used for the generation of the simulated signals are summarized in Tab.1 where
fs is the sampling frequency, T is the impulse period and σ is the standard
deviation of the amplitude of the impulses.

These signals are generated according the general formulation of BD given
in Eq.1, neglecting the periodic pattern p, as follows:

x = s0 ∗ gs + n ∗ gn (20)

29



fault identification through fourier-bessel based blind

deconvolution

Figure 6: Synthesized signal xtime: (a) impulsive pattern s0 with cyclic period T

and Gaussian distributed amplitudes, (b) s0 convolved with its IRF gs, (c)
additive Gaussian background noise with SNR = −18dB, (d) overall signal

For these simulations the IRFs gs and gn have been modelled according to the
response of a damped Single Degree of Freedom (SDOF) system to a unitary
impulse in the time domain [64], viz:

x = Ae−ζωntsin(ωdt) (21a)

ωd = ωn
√
1− ζ2 (21b)

where A is the response amplitude, ζ is the damping coefficient and ωn is
the resonance frequency. Starting from Eq.21, under the hypothesis of viscous
and sub-critical damping, gs and gn can be obtained in terms of acceleration
by taking the second derivative with respect to time. Tab.2 reports all the
parameters used for the computation of the IRFs. Fig.6 and Fig.7 show the
simulated signals xtime and xangle implemented in Matlab environment.

3.5.2 Results and discussion: stationary conditions

Before analysing the comparison between the results obtained with both FBBD
and CYCBD on xtime, it is necessary to discuss the input parameters chosen for
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Figure 7: Synthesized signal xangle: (a) fluctuating sinusoidal cyclic frequency, (b) im-
pulsive pattern s0 with cyclic period T and Gaussian distributed amplitudes,
(c) s0 convolved with its IRF gs, (d) overall signal

Table 1: Parameters used for the synthesized signals

fs L T σ SNR
(Hz) (samples) (samples) (/) dB

xtime 1000 5000 200 2.0 -18

xangle 4000 8000 364 ÷ 440 2.0 -18

Table 2: Parameters used for the IRFs

A ζ ωs (rad/s)

gs gn gs gn gs gn

xtime 1.67210−10 1.14810−10 0.007 0.06 942 2638

xangle 1.67210−10 1.14810−10 0.003 0.06 1570 2638

the application of both methods. In particular, it has been demonstrated [51]
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Figure 8: Effect of filter length N on the FBBD analysis: (a) estimated sources, (b)
ICS2FB values

how the filter length N plays a pivotal role in the final quality of the estimated
source and consequently it has to be carefully set. In general, the basic rule
for the correct extraction of the hidden periodicity requires the use of a filter
length higher than the fault periodicity in order to deconvolve an entire period
and identify the fault related pulses. Furthermore, it has to be reminded the
amplitude invariant nature of the BD that allows the normalization of the
estimated sources with respect to their maximum value in order to make them
comparable each other. Fig.8 explains the effect of the filter length on the FBBD
analysis in terms of estimated sources and maximized ICS2FB obtained by
applying the method taking into account filter lengths from 200 to 350 samples.
The behaviour of the algorithm from the two points of view is quite contrasting.
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Since all the tested lengths are higher than the cyclic period, different values
of N do not seem to affect the reconstruction quality of the deconvolved
cyclostationary source (see Fig.8(a)). On the other hand, the BD criterion is
strongly dependent on the filter length (Fig.8(b)). This aspect can be explained
considering the definition of the weighting matrix W given in Eq.17: all the
periodic components of s are comprised inside W and consequently, different
values of N lead to different estimations of the eigenvalue, i.e. the maximized
criterion. Therefore, according to these considerations, it is possible to define a
procedure for the optimal filter length evaluation based on the maximization
of the ICS2FB over a range of retrieved values of N, viz:

ICS2FB = max
N∈[Nmin,Nmax]

ICS2FB(N) (22)

where ICS2FB(N) denotes the proposed indicator conditioned to the period
N. As already stated, the lower limit Nmin has to be set higher than the fault
period. The choice of the higher limit Nmax is driven by the need of limiting
the computational time, exponentially increasing with the filter length due
to the convolution operation. According to the aforementioned protocol, the
following analysis has been carried out with N = 280 samples. The same filter
length has been considered for the CYCBD analysis.

The target waveform and the resulting patterns deconvolved through both
FBBD (left side) and CYCBD (right side) taking into account an increasing
number of considered cyclic harmonics, i.e. 10, 30, 50, 100 (from top to bottom),
are compared in Fig.9. It has to be noticed that the filtering operations required
by the BD methods leads to the deconvolution of sources delayed with respect
to the target waveform. Nevertheless, the choice of FIR filters allows to ignore
this aspect for this specific application due the constant delay [65] applied to all
the patterns that consequently does not affect the comparison. Fig.9 shows how
both FBBD and CYCBD enable the detection of the correct pulse periodicity
with the actual relative pulse amplitude. However, it can be seen that FBBD
estimates zero-mean patterns, i.e. pulses symmetrical with respect to the zero,
regardless the number of considered terms (Fig.9(b-d-f-h)). The same behaviour
can be noticed for CYCBD for low harmonic number (Fig.9(c)). Nevertheless,
in this case an increasing number of series terms (Fig.9(e-g-i)) enables the
estimation of the correct pulse sign. However, usually in the rotating machines
diagnostics field the main attention has to be pointed out on the fault frequency
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Figure 9: Estimated sources for the analysis of xtime for increasing number of con-
sidered cyclic harmonics (from top to bottom): (a) target impulsive pattern,
(b-d-f-h) results for FBBD method, (c-e-g-i) results for CYCBD method

and on the relative amplitude between different damage severities instead of
the absolute amplitude of a vibration signature. Therefore, taking also into
account the BD inability of recovering the real excitation amplitude, the issue
related to the peak sign estimation can be considered irrelevant for diagnostic
purposes.

The effect of the different mathematical natures of FBSE and FSE can be
explained through the comparison of the Euclidean distances, i.e. the squared
sum of the distance between each point of two signals [66], between the sources
estimated with both FBBD and CYCBD and the target pattern, depicted in
Fig.10. From the CYCBD standpoint (dotted line), there is a strong variation
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Figure 10: Euclidean distance between the deconvolved source and the target excita-
tion pattern

on the reconstruction quality, i.e. the measure of how the estimated source
reproduces the target impulsive pattern, moving from 10 to 30 considered
harmonics. This can be easily understood looking to Fig.9(c-e) where the
deconvolved waveform deeply changes in terms of peaks amplitude. A further
increment of harmonics taken into account in the algorithm does not seem
to modify the obtained signature as confirmed by the constant Euclidean
distance in Fig.10 for 50 and 100 harmonics. On the contrary, considering the
FBBD results (continuous line), the Euclidean distance remains quite constant
independently from the number of cyclic harmonics. As a consequence, the
extracted pattern reaches the maximum reconstruction quality even with 10

harmonics and does not change with an increasing number of considered
terms in Fig.9(b-d-f-h). This results clearly demonstrates the consideration
previously explained in Sec.3.4.1: the modulated nature of the FBSE better
fits for the description of transient signals due to the lower number of series
expansion terms required for the modelling of amplitude modulation localized
in short time spans. The effects on the BD method efficiency directly depends
on the weighting matrix W definition. In fact, its computation requires the
analysis of each cyclic harmonic one by one at each algorithm iteration, thus
the higher the number of required considered harmonics, the higher the
number of algorithm operations leading to an increasing computational cost.
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Table 3: Computational times for xtime

Harmonics 10 (s) 30 (s) 50 (s) 100 (s)

CYCBD 2.81 4.09 5.64 8.92

FBBD 3.13 4.42 5.97 9.06

Quantitatively speaking, Tab.3 reports the computational times required by
FBBD and CYCBD for the analysis of xtime. These times refer to a desktop
computer Dell XPS 8700 equipped with an Intel CoreTm i7-4790 @ 3.6GHz
processor. Although the higher mathematical complexity of the FBSE reflects
on a higher computational time with the same number of harmonics, the effect
of the lower number of series terms required for the pulses description can be
seen by comparing the values referred to the signals that reach the maximum
reconstruction quality for each method. In fact, taking into account the FBBD
analysis with 10 harmonics and the CYCBD analysis with 30 harmonics the
difference is not negligible, 0.9s lower for the proposed method. Therefore,
the ICS2FB may represent a more suitable indicator for real time condition
monitoring, pivotal aspect in the nowadays industrial scenario ruled by the
need of time (and consequently costs) reduction.

Moreover, Fig.9 highlights another advantaging aspect of the proposed
criterion. One of the critical points regarding the BD results is related to the
lower magnitude peaks, challenging (even impossible) to be detected due to the
residual background noise still present in the estimated signal. It can be noticed
that the FBBD whitened sources comprise background noise with lower specific
weight in the overall waveform. Therefore, the proposed indicator seems to
enable the extraction of lower amplitude peaks, usually covered by the residual
background noise. An example can be provided by the comparison of the final
waveform, i.e. the sources reaching the maximum reconstruction quality, from
both two methods in the range between 3500 and 4000 samples (Fig.9(b-e)).
Due to the lower specific weight of the background noise, the FBBD enables
the recovering of these low amplitude peaks, even masked in the CYCBD
estimated source.

FBBD, such as CYCBD and other BD methods, requires the a priori knowl-
edge of the carrier cyclic frequency of the fault related pattern. However, the
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Figure 11: Effect of the a priori knowledge of the fault related cyclic frequency on the
FBBD analysis: (a) estimated sources, (b) ICS2FB values

considered cyclic period directly induces the estimation of the weighting ma-
trix W.The choice of the correct frequency leads to the estimation of W that
weights the autocorrelation matrix according to a specific power flow hidden
inside the signal. As a consequence, if the measured signal is characterized by
a cyclostationary behaviour, this power flow is maximized at a given cyclic
frequency [55]. In order to explain this aspect, the robustness of the FBBD with
respect to the considered cycle frequency has been analysed taking into account
a set of different carrier frequencies. Being the sample frequency of xtime set
at 1000Hz, the pulse frequency is 5Hz. thus, the analysis has been performed
oh a set of frequencies from 3.5Hz to 6.5Hz in steps of 0.5Hz. Fig.11 depicts
the influence of the fundamental frequency oh the FBBD results, in terms of
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estimated impulsive pattern and maximized BD criterion. It is interesting to
observe that, unlike the effect of the filter length N, the choice of an unsuitable
cyclic frequency strongly affects the results also from the estimated source
point of view. In fact, as it can be seen in Fig.11(a), a carrier frequency different
from the actual one leads to the recovering of a waveform which differs (even
strongly) from the target pattern. Fig.11(b) demonstrates the aforementioned
relation between cyclic frequency and weighting matrix W. In fact, the ICS2FB
reaches the maximum value when the correct frequency is considered for the
analysis and the difference with respect the other values is significant (it has
to be noticed the logarithmic scale of the plot).

The real industrial environment represents a very challenging field of ap-
plication for BD methods and consequently the robustness of the proposed
algorithm has to be demonstrated taking also into account different inter-
ferences in the measured signal that may affect the diagnostic capability of
FBBD.

3.5.2.1 Effect of strong interferences

In order to prove the effectiveness of the proposed BD method, the comparison
between FBBD and CYCBD has been also performed taking into account two
different families of interferences:

• Distributed interference: the Gaussian background noise weight effect is
analysed by considering increasing values of SNR in the original signal,
i.e. −21dB and −25dB. These signals are displayed in Fig.12.

• Localized interference: a single random pulse convolved with gs is added
to the original signal. The resulting waveform is described in Fig.13.

Fig.14 describes the sources deconvolved through both FBBD (left side) and
CYCBD (right side) for increasing SNR (from top to bottom) taking into account
the number of cyclic harmonics that ensures the maximum reconstruction
quality, i.e. 10 and 30, respectively. The results clearly highlights one of the
aspects emerged in the previous section: the capability of FBBD to detect
the weakest peaks due to the lower residual background noise in the final
pattern. Fig.14 shows how, for increasing SNR values, the CYCBD extracts a
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Figure 12: Simulated signals for increasing SNR values: (a) original signal with −18dB,
(b) −21dB, (c) −25dB

Figure 13: Synthesized signal with strong random pulse: (a) impulsive pattern s0, (b)
s0 convolved with gs, (c) strong random pulse, (d) random pulse convolved
with gs, (e) overall signal

waveform with residual background noise with higher specific weight on the
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Figure 14: Estimated sources from xtime for increasing SNR (from top to bottom): (a)
target pattern, (b-d-f) from FBBD analysis, (c-e-g) from CYCBD analysis

overall signal and consequently even more peaks (each of them with significant
amplitude) are difficult to be detected at high SNRs. For example, taking into
account the case with −25dB in Fig.14(g), the method is no longer able to
extract all the peaks after sample 3500 being them buried under the residual
noise. On the contrary, the FBBD allows the identification of the weakest peaks,
independently from the considered SNR due to a residual background noise
that seems to keep a constant specific weight on the overall estimated source
for all cases.

Moving to the localized interference case, Fig.15 describes the results on
the signal depicted in Fig.13 obtained through both FBBD and CYCBD in the
case of maximum reconstruction quality reached. In both cases, the strong
single pulse is still identifying in the estimated sources but the introduced
interference does not disable the detection of the fault related cyclostationary
pattern. As well as the extraction of the lower amplitude peaks, this analysis
reveals another interesting aspect. Comparing Fig.15(b-c) it is possible to note
the presence of some artificial peaks around the strong random one between
samples 2300 and 2600. However, the source estimated through FBBD seems to
reduce this numerical artefact due to the presence of some peaks only before
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Figure 15: Estimated sources from xtime in case of presence of strong random pulse:
(a) target pattern, (b) from CYCBD analysis, (c) from FBBD analysis

the interference instead of the CYCBD case where those peaks can be seen also
after the added one.

The above discussed results proved the robustness of the proposed BD
algorithm to strong interferences, highlighting the suitability of FBBD for the
real industrial environment, main target for of the research in the mechanical
field.

3.5.3 Results and discussion: non-stationary conditions

Before analysing the results obtained through the application of FBBD and
CYCBD on xangle, some considerations regarding the selection of the optimal
FIR filter length are mandatory also in this contest, even more due to the
non-stationarity given by the fluctuating cyclic period hidden inside the signal.
In order to respect the main rule related to the choice of filter lengths higher
than the fault periods, the consideration stated in Sec.3.5.2 may be extended
to variable cyclic periods by taking into account the highest value into the
signal. As a result, the period range used for the ideal filter identification
in Eq.22 must be set higher than the highest period to be recovered. For the
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Figure 16: Effect of filter length N on the AngleFBBD analysis: (a) estimated sources,
(b) ICS2FB values

analysis of xangle, since the maximum period is 440 samples, the optimal filter
length for AngleFBBD has been retrieved into a range from Nmin = 440 to
Nmax = 560 samples. Fig.16 describes the ICS2FB values and the respective
estimated sources as function of the filter length N. In the stationary case,
an higher influence on the criterion rather than on the estimated pattern has
been demonstrated. For the non-stationary case, also the resulting waveform is
strongly affected by the considered filter length. However, comparing Fig.16(a)
and Fig.16(b) it is clear how the N that maximizes the ICS2FB leads to the
estimation of the source that better reproduces the target signature. According
to aforementioned considerations, the procedure described in Eq.22 retains its
validity for the angular domain analysis.
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Figure 17: Estimated sources for the analysis of xangle for increasing number of
considered cyclic harmonics (from top to bottom): (a) target impulsive
pattern, (b-d-f) results for FBBD method, (c-e-g) results for CYCBD method

The target waveform and the resulting patterns deconvolved through both
FBBD (left side) and CYCBD (right side) taking into account of an increasing
number of considered cyclic harmonics, i.e. 10, 30, 50 from top to bottom, are
compared in Fig.17. It can be noticed that FBBD enables the estimation of the
non-stationary excitation source through the analysis in the angular domain,
releasing it from the period fluctuations. Furthermore, the main FBBD’s cons
highlighted in the previous section, i.e. the inability on recovering the real peak
sign, is less significant in the angular domain. In fact, Fig.17(c-e-g) shows the
inability of CYCBD to recover the correct peak sign regardless of the number
of considered harmonic orders, despite the estimation of a non symmetrical
waveform. The comparison between Fig.17(b-d-f) and Fig.17(c-e-g) confirms the
physical implications of the different mathematical natures of FBSE and FSE.
The FBBD reaches the maximum reconstruction quality already considering
10 harmonics and a further increment does not improve the results. On the
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other hand, for the same purposes the CYCBD requires at least 30 harmonics
confirming the considerations described in the stationary case. These results
prove how the ICS2FB allows the extraction of hidden cyclostationary sources
with shorter cyclic frequency sets also in the angular domain. The quantitative

Table 4: Computational times for xangle

Harmonics 10 (s) 30 (s) 50 (s)

CYCBD 3.06 4.39 5.94

FBBD 3.51 4.83 6.17

consequence of this aspect is clearly explained by the computational times
summarized in Tab.4. These values confirm the consideration of the stationary
case: although the higher computational time required by the FBBD being
equal the number of harmonics, the lower number of series terms needed for
the pulse description, allows the reduction of the computational cost required
for reaching the maximum reconstruction quality.

This preliminary benchmark takes into account ad hoc synthesized signals
reproducing typical cyclostationary patterns of rotating machines in order
to demonstrate the strictly relations between the mathematical nature of the
series expansion basis functions and the number of cyclic harmonics required
by the algorithm. Nevertheless, this analysis does not prove the effectiveness
of the proposed criterion in the discrimination of the health conditions. Thus,
in the next section a further validation is carried out on real vibration signals.

3.6 application to real signals

This section provides the application of the proposed BD method on real
signals under both stationary and non stationary operating conditions in order
to demonstrate the ability of the FBBD on the fault detection, since from the
early damaging stages. The validation takes into account both datasets from
academic laboratories and real industrial case studies.

44



3.6 application to real signals

(a)

(b)

Figure 18: Rockwell Automation MPL-B680B AC brushless motor and NSK 6309

bearing. (a) lateral view of the motor, (b) Frontal view with bearing

3.6.1 Detection of bearing faults under non stationary operating regime

The first experimental validation of the proposed algorithm regards a real case
of industrial diagnostics. The device under test is the front ball bearing of a
servomotor used in a packaging machine. The servomotor is an MPL-B680B
AC brushless motor by Rockwell Automation equipped with a SICK Hiperface
® encoder. The latter is a sin/cos encoder with 1024 periods per revolution
and a resolution of 32768 steps per revolution. The velocity signal of the
motor and the torque signal are retrieved using the analog outputs available
in the motor drive, a Kinetix 6000 series BM-01 by Rockwell Automation. The
signals are connected to a National Instruments acquisition board, made by a
CDAQ-9172 backplane upon which a NI-9234 module collected an industrial
accelerometer output (Entek 81001 - monoaxial) and a NI-9215 module is
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Table 5: Bearing type NSK 6309 geometry parameters and characteristic frequencies

NSK 6309 @Max rpm @Min rpm Order
(/) (Hz) (Hz) (/)

Outer diameter D (mm) 100 / / /
Inner diameter d (mm) 45 / / /

Width B (mm) 25 / / /
Number of spheres N 8 / / /

BPFI / 41.6 10.8 5

BPFO / 25.3 6.7 3

Cage / 3.4 0.9 0.4

connected to the Kinetix analog output. This servomotor actuation provides
rapid variations of speed and inversions in the rotation sense of the shaft.
An external load of 3000 N is applied to the motor shaft in radial direction.
The tested device is a NSK 6309 deep groove single-raw ball bearing, whose
geometrical characteristics are reported in Tab.5. Fig.18 shows the brushless
motor and the frontal bearing under test. The test motion profile is cyclic,
following a polynomial profile, and it consists of both a clockwise and counter
clockwise rotation of the shaft. Fig.19(d) shows the speed profile as returned
by the drive controller of the motor, while the units have been normalized to
the maximum value for confidentiality agreements with the industrial partner.
The cyclic periodicity is equal to 0.972 seconds (1.029 Hz). Fig.19(e) shows the
angular profile of the shaft and it is computed by integration of the speed
profile. The sampling frequency chosen for all the experiments has been set 10

kHz; both the acquisition board and the accelerometer would have allowed an
higher bandwidth, but the analogue output of the Kinetix, being generated by
a DAC that converts digital information processed internally by the drive, has a
bandwidth limited to 7.2 kHz. Thirteen bearings in different health conditions
have been tested and the data has been collected in a database. In this thesis,
three bearings have been chosen from the database: two bearings artificially
damaged by using an electric drill (namely Bearing 4 and 5) and one healthy
bearing (namely Bearing 8). A dent was made on the outer race surface of
Bearing 4, and on the inner race surface of Bearing 5. Bearing 8 was in mint
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Figure 19: Observation showing part of the normalized test signals: (a) Bearing 4, (b)
Bearing 5, (c) Bearing 8, (d) normalized speed profile, (e) instantaneous
angular position

condition. Fig.19(a-c) shows the vibration signals corresponding to a machine
cycle for the tested bearings. For confidentiality reasons, the amplitude values
have been normalized with respect to the maximum value among the three
signals to preserve the different excursion ranges. The Ball Pass Frequency
Inner race (BPFI), the Ball Pass Frequency Outer race (BPFO) and the cage
frequency - summarized in Tab.5 - correspond to normalized periods of 925,
1490 and 11110 samples, respectively, taking into account the lower rotation
frequency, i.e. the higher fault period values. The proposed indicator has been
calculated using the protocol proposed in the previous section, taking into
account 10 order harmonics. The optimal filter length of each aforementioned
fault period has been retrieved according to Eq.22 into a range from 900 to
1100 samples (BPFI), from 1500 to 1700 samples (BPFO) and from 11150 to
11350 samples (cage).

The ICS2FB values for each characteristic frequency of the analysed bearings
are displayed in Fig.20. The results confirm what have been detected on the
physical systems:
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Figure 20: ICS2FB values for Bearing 4, Bearing 5 and Bearing 8 taking into account
BPFI, BPFO and cage frequency

bearing 4 : The highest ICS2FB value (2.8e-4) is related to the BPFO. However,
the difference between the fault related value and the highest value re-
lated to a non-faulty characteristic frequency (about 25 %) for this bearing
is sensibly lower with respect to Bearing 5. This particular aspect can be
explained through the analysis of the bearing geometry: remembering
the fault orders given in Tab.5, between the 10 harmonics of the BPFI
considered for the analysis it is possible to find some orders, i.e. 15, 30

and 45, that at the same time are harmonics of the BPFO, i.e. represent
the least common multiple between BPFI and BPFO and its first integer
multiples. Consequently, these orders contribute to slightly increase the
ICS2FB value also for the BPFI analysis, although no fault is related to this
order. This interesting industrial case study demonstrates the robustness
of the proposed indicator to possible unfavourable bearing geometries
that may lead to mistaken fault detection.

bearing 5 : It is possible to note that the BPFI related ICS2FB clearly prevails
on the other values which can be considered as negligible. The issue pre-
viously explained for Bearing 4 not seems to affect the different frequency
related values in this case. This can be understood by considering that
for this bearing the non-faulty frequency, i.e. the BPFO, is the lower one
and consequently in the 10 harmonics range a lower number of integer
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Figure 21: Estimated sources: (a) BPFO of Bearing 4, (b) BPFI of Bearing 5, (c) BPFI of
Bearing 8, (d) BPFO of Bearing 8

multiples of the least common multiple are considered and contributes
to increase the ICS2FB value for the non-faulty characteristic frequency.

bearing 8 : The comparability of ICS2FB values, combined with their lower
values with respect to the fault related cases, well describes the bearing
healthy conditions.

This quantitative analysis demonstrates the sensitivity of the proposed indi-
cator on the emergence of cyclostationarity hidden into the vibration signal,
proving its effectiveness on the discrimination between healthy and faulty
bearing conditions, also under strongly non-stationary working conditions.

Fig.21 illustrates the estimated patterns related to the maximum value of
ICS2FB, i.e. the faulthy characteristic frequency, for Bearing 4 and Bearing 5 and
the BPFI and BPFO related sources for Bearing 8. Considering both Bearing 4

and Bearing 5 (see Fig.21(a-b)), it can be clearly seen that the impulsive source
given by the local fault is detected by the proposed method. Although for
the BPFO the defect is visible already from the raw time signal (Fig.19(a)),
the most interesting result is given by the BPFI fault detection. Due to the
measurement sensor position closer to the outer ring, the direct detection of
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the fault vibration signature from the acquired signal represents a challenging
task. In fact, the impulsive excitation given by the impact between defect and
rolling elements is damped by the system transfer function between inner and
outer race and this filtered signal is directly measured by the accelerometer.
Nevertheless, in the source estimated with the AngleFBBD method, the impulse
train is clearly highlighted with respect to the residual background noise.

Another particular aspect of FBBD and, more in general, of BD theory that
has been neglected in the synthesized signals analysis, may be underlined com-
paring the raw signal and the deconvolved sources from Bearing 8 in Fig.19(c)
and Fig.21(c-d). The time signal presents a clearly visible periodic component,
contemplated in the general scheme of BD given in Eq.1, despite the healthy
bearing conditions. The estimated waveforms show how the proposed method
allows the elimination of periodic patterns, e.g. related to electric interference,
in addition to the background noise. This result proves the robustness of
the proposed method also with respect to possible interference on the tested
system or on the measuring chain.

3.6.2 Identification of different levels of bearing damage under stationary working
conditions

The second experimental validation of the proposed BD algorithm regards
the analysis of the Dataset 2 (previously described in Sec.2.3) acquired from
the bearing test bench at the University of Ferrara. The goal of this validation
is the demonstration of the sensitivity of the ICS2FB to the damage severity
through the analysis of three different artificial defects with increasing size on
bearings operating under stationary conditions.

Fig.22 shows the raw time signals contained into Dataset 2. The actual
response of the system to the excitation given by the localized artificial fault
on the outer race is represented by a train of impulses and this aspect can
be considered as a validation of the simulated signal exploited in Sec.3.5.2.
Being the artificial fault overstated, it has to be underlined that the fault related
signatures are visible already from the raw signals. Nevertheless, the target of
this experimental validation is the discrimination between different damaging
levels instead of the extraction of the fault related excitation from a noisy
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Figure 22: Observation showing part of the test signals of Dataset 2: (a) healthy bearing,
(b) 0.8mm fault, (c) 1.6mm fault, (d) 2.4mm fault

observation as demonstrated in Sec.3.6.1. In this direction, the comparison
between Fig. 22(b-c-d) clearly explains how an increment in the fault severity
does not directly reflect on the pulse amplitude, i.e. the relation between
damaging level and signal amplitude is not represented by a linear law. This
behaviour is related to the non-linear physical filter between the excitation, i.e.
the impacts between defect and rolling elements, and the response measured
by the sensor. It has to be kept in mind that one of the target of BD is the
reduction of the effect of the structure dependent filter in order to highlights
the fault related signature and consequently enable the discrimination of
different fault severities.

Being the main attention pointed out on the indicator value instead of
the estimated source, the analysis has been performed considering five cyclic
harmonics in order to reduce the computational time required by the algorithm.
The characteristic frequencies (BPFO, BPFI and Ball Spin Frequency (BSF))
at the rotational speed of 2400rpm correspond to normalized fault periods
of 262 samples, 180 samples and 497 samples, respectively, being the sample
frequency set at 51.2kHz. Consequently the FBBD has been performed by
retrieving the optimal filter length into a range fromNmin = 265 toNmax = 320
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Figure 23: ICS2FB values considering BPFO, BPFI and BSF for the four tested bearings
of Dataset 2

for BPFO, from Nmin = 180 to Nmax = 250 for BPFI and from Nmin =

500 to Nmax = 560 for BSF. The ICS2FB values for the BPFO, BPFI and BSF
for each tested bearing of Dataset 2 are summarized in Fig.23. Despite the
significant difference between the BPFO related values and the others, the
main attention for the purpose of this analysis has to be pointed out on the
values inside the BPFO family. In presence of a real damage the criterion value
tend to significantly increase for increasing defect size. This increment reveals
a quite linear trend, not visible in the raw signals due to the filtered excitation
measured by the sensor. For the other characteristic frequencies, besides values
clearly lower with respect to the fault related one, no relation between the
different bearings can be identified. This aspect underlines the capability of
FBBD of discriminates different fault severities, pivotal aspect in the real time
condition monitoring.

However, this validation has been performed on a discrete set of damaging
levels. The nowadays industrial scenario requires the continuous monitoring
of the degradation trend for the real time assessment of the system conditions
and the application of prognostic models for predictive maintenance purposes.
From this standpoint, another experimental validation on a run to failure test
needs to be performed in order to prove the effectiveness of the FBBD for
the real time damaging level assessment and propose the ICS2FB as suitable
indicator for the development of prognostic models.
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Table 6: Bearing type Rexnord ZA-2115 characteristic frequencies, normalized periods
and filter length ranges

α @2000 rpm N Nmin Nmax

(Hz) (Samples) (Samples) (Samples)

BPFI 297 68 70 130

BPFO 236 85 85 150

BSF 278 73 75 140

3.6.3 Real time assessment of the damaging level: run to failure bearing test

The last experimental validation deals with the analysis of two run to failure
tests from the IMS dataset describe in Sec.2.1 in order to discuss the capability
of the FBBD on the fault development monitoring. In particular, in this section
two diffent datasets are considered:

• Campaign 2: Channel 1, related to a 7 days length endurance test leading
to the appearance of an outer race fault on Bearing 1.

• Campaign 3: Channel 3, related to a 30 days length endurance test leading
to the appearance of an outer race fault on Bearing 3.

The characteristic frequencies, the related normalized periods and the ranges
of investigations for the optimal filter length identification are reported in
Tab.6.

The evolution of the ICS2FB related to all the characteristic frequencies for
both tests are displayed in Fig.24 and Fig.25 together with the respective
statistical thresholds. The thresholds can be designed in order to detect the
fault appearance and at the same time identify the fault position. For diagnostic
purposes, a suitable choice is represented by thresholds based on possible
outliers, i.e. observations distant from the distributions of the value trend.
In fact, usually the presence of outliers is related to fault appearances or
changes on the working conditions. For this reason, for the fault detection
through thresholds the necessary condition is the stationarity of the working
parameters in order to associate all the changes inside the vibration signature
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Figure 24: Campaign 2 - ICS2FB values together with the statistical thresholds consid-
ering: (a) BPFO, (b) BPFI, (c) BSF

to the damaging process rather than to regime modifications. Hence, the bases
idea is to define a threshold starting from observations under the hypothesis of
healthy conditions (e.g. the first values at the beginning of the test) and check if
the following samples are coherent with the initial distribution. In this contest,
a suitable tools for the definition of outlier based thresholds is represented by
the Tukey’s method [67]. This method has been already successfully exploited
for the fault detection through vibration based scalar indicator [68, 69] due
to its general nature and its independence from the a priori knowledge of
the data distribution. The only limitation is that the Tukey’s method may no
longer be effective if the data distribution is non-symmetric. The method is
based on the interquartile range (IQR), i.e. the distance between the first and
the third quartile, and defines two families of outliers, named mild outliers
and extreme outliers. The first class regards the data not so far from the data
distribution and is defined as 1.5 times the IQR range. The latter refers to
values significantly distant from the reference distribution and is defined as
3 time the IQR distance. For this experimental validation only the extreme
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Figure 25: Campaign 3 - ICS2FB values together with the statistical thresholds consid-
ering, from top to bottom, BPFO, BPFI, BSF: (a-c-e) entire test, (b-d-f) focus
on the last stage

outliers threshold has been considered since the proposed indicator starts to
rise only if the fault occurs. The threshold has been calculated starting from
the ICS2FB values from the first day of test under the hypothesis of healthy
conditions for all the bearings in this time span.

The trends of the proposed agree with the physical observation of the tested
bearings degradation:

campaign 2 : Fig.24(b-c) clearly show how the ICS2FB values related to BPFI
and BSF stand below the respective thresholds until the end except
for some sparse points that cross the thresholds although no fault has
occurred. This aspect is related to the data dispersion given by unpre-
dictable phenomena related to the mechanical system or to the measuring
chain and thus unrelated to the bearing fault. This issue can be overcome
through a data smoothing, e.g. by means of a moving average [70] con-
volving the time series with a fixed rectangular window. On the contrary,
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the BPFO related ICS2FB values (Fig.24(a)) remain under the threshold
until sample 530 (corresponding to 3.7 days). After this acquisition the
trend follows the typical propagation phenomena of the bearing fault, i.e.
consecutive propagation and smoothing after the defect appearance [71].

campaign 3 : this test represents a more challenging benchmark for the
proposed criterion. In fact, despite the Campaign 2 where the fault
related signature is clear visible in the vibration signals acquired after
the fault appearance, for Campaign 3 the excitation pattern is strongly
masked and barely identifiable in the last signal acquired. As well as in
Campaign 2, the BPFI and BSF related ICS2FB values (see Fig.25(c-d-e-f))
remain under the respective threshold for the entire test length. Moving
to the BPFO (Fig.25(a-b)) the criterion values overcome the thresholds
only in the last stage of the test (sample 6150) according to the issues
already underlined for this dataset. Although the indicator evolution in
this case is not clear as for the Campaign 2, the focus on the last stage
(Fig.25(b)) shows the degradation propagation previously described,
highlighting the robustness of the ICS2FB also under strong interferences
on the measured signals.

This experimental validation demonstrates that the bearing damaging pro-
cess reflects on an transition from stationarity to cyclostationarity, confirming
the need of exploiting this theory in order to improve the BD effectiveness in
this field. Moreover, the above shown results prove the sensitivity of ICS2FB
to the fault severity, making the FBBD method a suitable tool for the assess-
ment of the degradation level for monitoring purposes, even under strong
interferences inside the vibration signal. This aspect is pivotal on the real time
condition monitoring perspective but at the same time allows the idea of fu-
ture exploitations of the proposed indicator as the observations for prognostic
purposes, e.g. real time RUL estimation through prognostic models.

3.7 summarizing remarks

In this chapter, a novel BD criterion has been defined starting from the re-
definition of the ICS2 through the FBSE in order to improve the effectiveness
of the cyclostationarity bases BD. The resulting method, called FBBD, has
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been firstly introduced for the analysis of stationary working conditions, e.g.
constant speed, then it has been extended to the angular domain (in this case
named AngleFBBD) enabling the fault detection under non-stationary operat-
ing conditions. An exhaustive experimental validation has been carried out on
both simulated signals and real case studies. This activity led to the following
results:

• A new BD indicator (called ICS2FB) has been proposed re-writing the
ICS2 through the FBSE in order to better fit the fault related waveform.
This criterion has been written in form of generalized Rayleigh quotient
and its maximization is the base of the proposed BD algorithm.

• The improvement given by the FBBD to the existing cyclostationarity
based BD method (known as CYCBD) has been demonstrated through the
analysis of simulated signals reproducing ciclostationary patterns under
both stationary and non-stationary conditions. This analysis highlighted
how the different mathematical natures of FBSE and FSE reflect on the BD
effectiveness. The FBBD requires a lower number of terms for the fault
related pattern reconstruction and consequently the computational times
is reduced with respect to the CYCBD. This analysis also underlined the
robustness of the proposed method with respect to possible masking
interferences comprised into the measured signals.

• The analysis of real vibration signals from both academic and industrial
environment highlights the capability of the proposed indicator to detect
incipient faults, even in the early stages of the damaging process, under
different operating conditions. Therefore, the sensitivity of the ICS2FB
to the damaging level has been demonstrated through the analysis of
artificially damaged bearings with different fault sizes.

• The study of a run to failure test demonstrated the effectiveness of
the proposed method for the real time condition monitoring on real
mechanical systems, enabling its possible exploitation as the observation
for prognostic purposes.

The main aspect of originality in this chapter is represented by the com-
bination of cyclostationarity based BD and the FBSE. The modulated nature
of the latter allows the faster reconstruction of the excitation related pattern
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without losing the diagnostic capability of the cyclostationary BD method. All
the theoretical consideration proposed in this chapter have been supported by
an extended experimental validation on the analysis of several bearing faults.
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4
P R O G N O S T I C S O F R O TAT I N G M A C H I N E S T H R O U G H
G E N E R A L I Z E D G AU S S I A N H I D D E N M A R K O V M O D E L S

4.1 introduction

In the last decades, reliability has been playing an even more fundamental role
in the industrial economy, conditioning all the aspects of the productive line
from the concept design to the final quality control. In particular, the need
for time (and consequently costs) reduction drives the research of even more
effective maintenance strategies for the failure prediction. In this contest, the
Condition Based Maintenance (CBM) can be seen as a suitable maintenance
strategy being it based on the real time health condition monitoring of a me-
chanical system. This methodology enables the optimal maintenance decision
based on the actual system conditions allowing the reduction of unnecessary
maintenance operations (and consequently of the machine downtime) and
improving the reliability of the system. For this reason its exploitation in the
industrial environment has been exponentially increasing in the last years.

One of the main tasks in CBM is represented by the health prognostics
which aims to estimate the RUL of the system starting from the historical
and on going degradation trends observed through some diagnostic indicator
[72]. The machinery health prognostics is a wide field exhaustively studied
starting from the 1960s but all the existing methods can be divided into
three main families: physics model based approaches, Artificial Intelligence
(AI) approaches and statistical model based approaches. The physics model
based approaches describe the degradation process through mathematical
models that reproduce the failure mechanism exploiting parameters related
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to the material properties and the stress levels. These parameters are usually
identified through experimental campaigns or finite elements analysis. The
most widely exploited physics model is the Paris-Erdogan model [73]. This
model has been proposed in 1963 in order to describe the crack growth.
Starting form the original model, many modified versions have been proposed
in order to better fit the machinery prognostics purposes. Between them, a
particular mention has to be given to the work of Li at al. [74] that applied
the Paris law for describing the rolling element bearing damaging process.
Another interesting application has been proposed by Sun et al. [75] that
enhanced the Paris-Erdogan model transforming it into a state space model.
An exhaustive overview about physics model based prognostic approaches
applied on rotating machines is provided in Ref. [76]. This family of methods
guarantees an accurate description of the damaging process inside simple
mechanical systems. However, the difficult representation of the degradation
evolutions in complex machinery restricts the field of application of these
approaches.

In this contest, the AI approaches better deal with complex systems be-
ing them based on the description of the degradation process through the
intelligent analysis of the available observations directly from the physical
system, without building mathematical models. The most famous AI prog-
nostic approach is represented by the Artificial Neural Network (ANN) based
on several nodes linked in a complex structure that aims to reproduce the
working process of the human brain. In the last years, several applications of
ANN to the machine prognostics have been presented in particular for the
bearing RUL estimation. In this contest it is worth mentioning the work of
Gebraeel et al. [77], the work of Pan et al. [78] and the work of Xiao et al. [79].
Inside the AI methodologies, interesting results have been reached through the
Support Vector Machine (SVM) based approaches. These methods are based
on the statistical learning theory proposed by Vapnik [80] and their effective-
ness for the prognostics of rotating machinery has been widely demonstrated
in the last decades. In this contest, the common application of the SVM for
prognostic purposes is represented by the support vector regression [81, 82,
83]. Despite the suitability for complex system, the main weak point of the AI
based prognostic approaches is represented by the need of a high amount of
high-quality training data, not even possible to obtain in real case studies.
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Moving to the statistical model based prognostic approaches, also known
as empirical model based approaches, they try to estimate the RUL through
statistical models based on the empirical knowledge of the system. Usually,
the resulting RUL is given in form of conditional Probability Density Function
(PDF) depending on the observations, i.e. diagnostic criteria that describe the
damaging trend. The relation between observations and health condition is
given in a probabilistic way taking into account random variances that allows
the description of the uncertainly related to the degradation phenomena. For
this reason in the last years the statistical approaches have become the most
popular in the rotating machinery prognostic field. One of the most common
statistical method is based on the AR models and considers the future state of
the degradation trend as a linear function of the previous observations (except
for some random errors). In this contest, Barraza-Barraza et al. [84] proposed
an improvement of the AR model based RUL estimation through the study of
a crack growth. Speaking about rolling element bearing prognostics, Qian et
al. [85] improved the effectiveness of the AR based prognostics through the
combination with the particle filter theory. Despite the simplicity of calculus,
the performance of AR model based approaches strongly depends on the
historical trends of observations leading to possible inaccurate estimations, in
particular in the last stages of the working life.

In order to overcome this drawback at the expense of the computational time,
Cox proposed a new statistical method, named Proportional Hazards Model
(PHM) [86], that divides the hazard rate, i.e. the rate of fault for a system
at a given operating age, into a base hazard function, i.e. the deterministic
component, and a covariate function, i.e. the stochastic component. A particular
mention has to be given to the work of Makis et al. [87, 88] that exploits the
PHM in order to describe the failure rate of a system taking also into account
the maintenance cost during the long run. From a more applicative standpoint,
Jardine et al. [89] developed a PHM based condition monitoring software
that has further been applied for the analysis of different types of machines
[90]. An exhaustive review about other PHM based approaches and, more in
general, other stochastic models can be found in Ref. [91]. The PHM based
prognostic models enable a more accurate prediction of the damaging trend
but the covariate function needs to be described through other stochastic
processes, e.g. the Markov models, and consequently requires a computational
time higher with respect to the single model based approaches.
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The compromise between the effectiveness in failure prediction and low
computational cost explains the huge exploitation of another statistical method,
the Hidden Markov Model (HMM), for prognostic purposes. The basis idea is
that the degradation process of a system can be described through a discrete
number of finite states and the transition between two states follows the
principle of the Markov chain [92]. The term hidden refers to the impossibility
to directly observe the health state and consequently the relation between the
observations and the damage level is given in a probabilistic way [93]. The
basic theory of HMMs has been published in the late 1960s by Baum et al.
[94] and has been firstly applied in the speech recognition field by several
authors [95, 96]. In the last decades, the Markov chain has been exploited for
describing the degradation mechanism of mechanical systems and the HMMs
have been applied for machine prognostics and RUL estimation [97, 98]. The
conditional distribution that relates the observations to each discrete state of
the HMM is the single component of a mixture distribution and consequently
the probability distributions of each state belong to the same distribution
family, e.g. Gaussian or Bernoulli [99].

Unfortunately, in particular in the last stages of the working life, the relation
between observations and health state is different with respect to the one at the
first stages, i.e. where the system should be in healthy conditions. Therefore,
the consideration of a generalized distribution as the component of the mixture
distribution may allow to take into account these unavoidable modifications
and better fit the real connections between the model and the observations. This
research activity try to fill this gap through the realization of an HMM based
on a mixture of Generalized Gaussian Distributions (GGDs) that enables the
changes between the distributions of each state through different distribution
parameters. In this direction, this chapter proposes an iterative algorithm for
the estimation of the model parameters starting from the likelihood function
and the observations measured on the physical system.

Firstly, a brief overview about the theory of HMM and the parameter esti-
mation in case of GGD mixture is given. Then, the new parameter estimation
algorithm is given for the case of univariate mixture distribution, i.e. consid-
ering a single series of observations. The algorithm is then extended for the
more general case of multivariate mixture distribution in order to improve the
results for complex system through the exploitation of several parameters as
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model observations. The proposed model, named Generalized Gaussian Hid-
den Markov Model (GGHMM), is then validated taking into account several
datasets regarding both academic test benches and real industrial applications.
Dataset 1.2 of the University of Ferrara is exploited for demonstrating the
better results reachable through the proposed model with respect to the classic
Gaussian HMM. The suitability of the ICS2FB described in the previous chapter
for bearing prognostics through HMMs is proved through the application
on the IMS dataset. The extension on more complex systems by means of a
multivariate HMM is illustrated through the analysis of a run to failure test on
a planetary gearbox. Finally, some final considerations are given.

4.2 generalities about gaussian hidden markov models

Nowadays, HMMs are widely used for the treatment of sequential data in
several fields. Consider a time series data, also known as model observations,
i.e. a diagnostic indicator describing the degradation trend, Y = {Y1, Y2, . . . ,
YT } that follows a continuous or discrete distribution. For the sake of clarity,
hereafter capital letters refer to vectors and bold capital letters refer to matrices.
A discrete HMM consists of a state sequence S = {S1, S2, . . . , ST } where the
probabilistic dependence between two consecutive states follows a first order
discrete Markov process, i.e. the current state only depends on the previous
one, viz:

P(St|S1, . . . ,St−1) = P(St|St−1) (23)

The limitation at the first order is a simplifying assumption but the Markov
chain can be easily extended to higher orders [100]. IfN is the number of model
states, the state variables St are taken from a finite set, known as state-space of
the HMM, S = {1, . . . , N} such that St = i, i ∈ S, i.e. the HMM is discrete. The
probabilities defined in Eq.23 drive the transitions between consecutive states,
thus are called transition probabilities and comprised into a transition matrix
A(t) with entries:

aij(t) = P[St+1 = j|St = i], i, j = 1, . . . ,N (24)

The term hidden refers to the fact that each element of the state sequence
can not be directly observable, thus the observations Yt are related to the states
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. . .S1 S2 STS3

fi(Y1) fi(Y2) fi(Y3) fi(YT)

Y1 Y2 Y3 YT

Figure 26: Dependence graph for observations inside an HMM

St (see Fig.26) through distribution functions, i.e. PDFs that map the St into Yt
making the states observable, defined as:

fi(Yt) = f(Yt|St = i), i = 1, . . . ,N (25)

Being the set of S finite the marginal distribution of the data is a mixture of N
contribution [101], viz:

f(Yt) =

N∑
i=1

pifi(Yt) (26)

where pi are the component proportions. From Eq.26 it is clear that the number
of model states should be chosen as the optimal number of mixture compo-
nents that better fits the observation distribution. This aspect can be better
explained through a simple example. Fig.27 shows the RMS value trend and
its PDF for the Dataset 1.2 related to the bearing test bench at the University
of Ferrara. It can be immediately noticed that the RMS values deviate con-
siderably from a Gaussian distribution (or in general from other uni-modal
distributions) and there are several modes in these data, i.e. the marginal distri-
bution is a mixture distribution. As previously stated, the number of mixture
components corresponds to the number of model states, i.e. the number of
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Figure 27: Results from Dataset 1.2 of the test bench at the University of Ferrara: (a)
time RMS values from the raw signals, (b) PDF of the RMS

damaging stages for the working life of the mechanical system under test, and
consequently has to be selected in order to describe the data distribution as
accurately as possible. A suitable way to define the optimal state number is
given by the Bayesian Information Criterion (BIC). This indicator has been
proposed by Schwarz [102] and compares the maximized likelihood function
with the actual distribution of data. The BIC function is increasing with respect
to the number of model parameters, i.e. the number of variables required for
defining the data distribution, and with respect to the variance error between
the maximized likelihood function and the real distribution. Consequently, a
lower BIC value indicates a model that better fits the considered data. The BIC
should be applied for the comparison between models with the same number
of parameters, in order to associate any variations only to different variance
errors [103]. Tab.7 reports the BIC values computed for the data distribution
given in Fig.27(b) taking into account the case of uni-modal Gaussian distri-
bution and the Gaussian mixture with two and three components. It is clear
how the higher improvement (one magnitude order) in the fitting quality is
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Table 7: Selection of optimal state number: BIC values and distribution intervals for
the RMS values on Dataset 1.2

Number of states Distribution intervals BIC

1 0-16 1285

2 0-3 , 3-16 131

3 0-3 , 3-10 , 10-16 39

4 0-1, 1-3 , 3-10 , 10-16 45

given by the consideration of a mixture distribution. The three components
model represents the best approximation of the actual data distribution and
consequently the optimal state number for the description of the working life
is three, i.e. health stage, early damaging stage and high damaging stage.

Moving back to the element of an HMM, for completely defining a model it
is necessary to define another element, named initial state (or prior) probability,
that describes the probability of the system to be in a given state at the first
time span:

πi = P[S1 = i], i = 1, . . . ,N (27)

Starting from all the aforementioned model parameters, i.e. the transition
probabilities matrix A, the initial state probability π and the distribution
parameters vector B, the optimal state sequence, i.e. the new sequence state
derived from the model, can be obtained through the Viterbi algorithm [104]:

ST = argmax
i

δT (i) (28a)

St = ψt+1(St+1), t = T − 1, . . . , 1 (28b)

where

δ1(i) = πifi(Y1), i = 1, . . . ,N (29a)
ψ1(i) = 0, i = 1, . . . ,N (29b)
δt(j) = max

i∈[1,N]
δt−1(i)aijfi(Yt), i = 1, . . . ,N, t = 2, . . . , T (29c)

ψt(j) = argmax
i∈[1,N]

δt−1(i)aij, i = 1, . . . ,N, t = 2, . . . , T (29d)
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The estimation of all the model parameters depends on the distribution fam-
ily of the PDFs fi(Yt). Usually, the components of the mixture are considered
as Gaussian and thus, a brief description on the estimation algorithm for this
distribution is mandatory.

4.2.1 Parameters estimation for Gaussian Hidden Markov Models

In general, the estimation of the model parameters means the computation
of the maximized likelihood function of the HMM, i.e. the likelihood of the
observations given a certain state sequence [105]. First of all, it is necessary
to define two different variables, named forward variables and backward
variables, respectively. According to Rabiner [99], the forward variables can
be defined as the combination of the probabilities of different state sequences
that lead to a certain state St, viz:

α1(i) = πifi(Y1), i = 1, . . . ,N (30a)

αt(j) =

N∑
i=1

αt−1(i)aijfj(Yt), t = 2, . . . , T , j = 1, . . . ,N (30b)

Analogously, the backward variables are defined as the probabilities of the
observations from t+ 1 to T given the state St such as:

βT (i) = 1, i = 1, . . . ,N (31a)

βt(i) =

N∑
j=1

βt+1(j)aijfj(Yt+1), t = T − 1, . . . , 1, i = 1, . . . ,N

(31b)

In order to prevent underflow and other computational artefacts, it is necessary
to scale both forward and backward variables according to a given factor [93].

Starting from the forward and backward variables it is possible to define the
probability of being in state i at the time t as:

γt(i) =
αt(i)βt(i)∑N
i=1 αt(i)βt(i)

(32)
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and, analogously, the probability of making a transition from state i to state j
at time t as:

ϵt(i, j) =
αt(i)aijfj(Yt+1)βt+1(j)∑N

j=1

∑N
i=1 αt(i)aijfj(Yt+1)βt+1(j)

(33)

It should be noticed that γt and ϵt are directly related, viz:

γt(i) =

N∑
j=1

ϵt(i, j) (34)

Finally, due to the ellipsoidal symmetry of the Gaussian distribution Liporace
[105] demonstrated that the distribution parameters, i.e. means µi and standard
deviations σi, that maximize the model likelihood function are given by:

µi =

∑T
t=1 γt(i)Yt∑T
t=1 γt(i)

, i = 1, . . . ,N (35a)

σi =

∑T
t=1 γt(i)(Yt − µi)

2∑T
t=1 γt(i)

, i = 1, . . . ,N (35b)

Starting from γt and ϵt it is possible to calculate the transition probabilities
and the initial state probabilities, such as:

aij =

∑T−1
t=1 ϵt(i, j)∑T−1
t=1 γt(i)

, i, j = 1, . . . ,N (36a)

πi = γ1(i), i = 1, . . . ,N (36b)

The parameters estimation procedure is better known as Expectation-Maximization
(EM) algorithm [106] and can be summarized as follows:

step 1 : Choose initial values for the model parameters;

step 2 : Compute the expected state sequence through the Viterbi algorithm;

step 3 : Re-estimate the model parameters conditioned on the new hidden
state sequence;

step 4 : Repeat Step 2 and Step 3 until convergence.
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Initial guess of A,B,π

Calculation of S 
(Viterbi algorithm)

Estimation of (A,B,π)NEW

abs(ANEW-A) < ε ?
abs(BNEW-B) < ε ? 
abs(πNEW- π) < ε ? 

MODEL DEFINED

YES

A=ANEW
B=BNEW
π=πNEW

NO

Figure 28: Flow chart of the EM algorithm for the estimation of HMM parameters

The EM algorithm is detailed described with the flow chart in Fig.28.

Fig.27(b) clearly shows the main drawback related to hypothesis of Gaussian
PDFs for all the model states. It is possible to note that in the first states, i.e.
system in healthy conditions and early fault appearance, the Gaussian PDFs fit
the actual observation distributions. However, the heavy damage state presents
an observation distribution that moves away from the Gaussian to the uniform
distribution, thus the estimated model PDF is no longer able to describe the
real data distribution. For this reason, the basis idea of the research activity
proposed in this chapter regards the consideration a PDF family that allows the
modifications within different states in order to improve the model capability
of assessing the actual damaging level of the system.

4.3 generalized gaussian based hidden markov models

A suitable way to overcome the aforementioned limitation is to consider a
generalized Gaussian mixture as the model PDF. This generalized distribution
allows the modifications within the model states through the values of few
distribution parameters. In this section a novel algorithm for the estimation
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of the GGD parameters based on the actual observations is proposed. The
algorithm is firstly defined in case of mono-variate distributions, i.e. the related
HMM considers only a single set of observations, and then is extended to the
case of multi-variate PDFs, i.e. the model takes into account several different
sets of diagnostic parameters as observations.

4.3.1 Parameters estimation for mono-variate generalized Gaussian Hidden Markov
Models

First of all, it might be useful to remind the definition of the generalized
Gaussian PDF:

f(x) =
p

2Σ
1
2 Γ
(
1
p

)e
[
−

(
|x−µ|

Σ
1
2

)p]
(37)

where µ is the mean value, p is the shape factor, Σ is the scaling factor and
Γ represents the Gamma function. This family of distributions includes the
Gaussian distribution (p = 2 and σ2 = Σ2/2), the Laplace distribution (p = 1)
and converges pointwise to the uniform distribution for p→ ∞. In general the
shape factor p describes the exponential rate of decay of the distribution, i.e.
the higher p the flatter is the PDF.

The methodology proposed by Liporace [105] for the model parameters
estimation based on the observations can be generalized for all the ellipsoidal
symmetrical PDFs that can be expressed in the following form:

|Σi|
−1

2 fi(qi(x)), i = 1, . . . ,N (38)

where qi(x) is a quadratic form, viz:

qi(x) =
(x− µi)

2

Σi
, i = 1, . . . ,N (39)
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Under this assumption, being Y = {Y1, Y2, . . . , YT } the observation dataset, the
mean value and the scale factor that maximizes the likelihood function for
each state are given by the following:

µi =

T∑
t=1
ρt(i)βt(i)Yt

T∑
t=1
ρt(i)βt(i)

, i = 1, . . . ,N (40a)

Σi =

T∑
t=1
ρt(i)βt(i)(Yt − µi)

2

T∑
t=1
αt(i)βt(i)

, i = 1, . . . ,N (40b)

where αt and βt are the previous defined forward and backward variables and
ρt is defined as:

ρt(i) =

N∑
j=1

αt−1(j)aji

[
−2
∂fi(x)

∂qi(x)

∣∣∣∣∣
x=Yt

]
, i = 1, . . . ,N (41)

It should be noticed that for the Gaussian case, the sobstitution of Eq.41 inside
Eq.40a and Eq.40b leads to the expression given in Eq.35a and Eq.35b.

In order to apply this method, Eq.37 has to be rewritten in a form compatible
with Eq.38,viz:

f(x) =
p

2Σ
1
2 Γ
(
1
p

)e
{
−

[(
(x−µ)2

Σ

)p
2
]

(42)

Starting from Eq.42, the derivative inside the square brackets in Eq.41 is given
by:

−2
∂fi(x)

∂qi(x)

∣∣∣∣∣
x=Yt

= fi(x)piqi(Yt)
pi
2 −1, i = 1, . . . ,N (43)

Substituting Eq.43 into Eq.41 and remembering the definition of forward
variables in Eq.30b, after a simple manipulation ρt is given by:

ρt(i) = αt(i)piqi(Yt)
pi
2 −1, i = 1, . . . ,N (44)
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Finally, substituting Eq.44 into Eq.40a and Eq.40b the expression of mean value
and scale factor can be written (taking also into account Eq.32) as:

µi =

T∑
t=1
γt(i)qi(Yt)

pi
2 −1Yt

T∑
t=1
γt(i)qi(Yt)

pi
2 −1

, i = 1, . . . ,N (45a)

Σi =

pi
T∑
t=1
γt(i)qi(Yt)

pi
2 −1(Yt − µi)

2

T∑
t=1
γt(i)

, i = 1, . . . ,N (45b)

It should be noticed that both the mean values and the scale factors depend
on the shape factor and consequently a third equation is mandatory for the
resolution of the problem.

According to Varanasi and Aazhang [107], the relation between scale factor
and variance for a generalized distribution is given as follows:

|Σ|
1
2 =

(
p

T

T∑
t=1

|Yt − µ|
p

) 1
p

(46)

The same relation can be expressed depending on the Gamma function [108]:

Σ
1
2 =

σ2 Γ
(
1
p

)
Γ
(
3
p

)


1
2

(47)

A title of example, for the Gaussian case (p = 2) both Eq.46 and Eq.47 de-
scribe the well established relation σ2 = Σ2/2. Moving back to the parameters
estimation through the system observations, the left side of Eq.46 can be
rewritten through Eq.45b. Eq.47 clearly explains how variance and scale factor
are proportional given a value of the shape factor. Consequently, the right
side of Eq.46 must be weighted in the same way of the left side in order to
respect the proportionality between the two parameters. This consideration
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leads to a reinterpretation of Eq.46 that can be expressed, after some simple
manipulation, in the following form:


pi

T∑
t=1
γt(i)qi(Yt)

pi
2 −1(Yt − µi)

2

T∑
t=1
γt(i)


1
2

=


p2i

T∑
t=1
γt(i)qi(Yt)

pi
2 −1|Yt − µi|

pi

T∑
t=1
γt(i)


1
pi

, i = 1, . . . ,N (48)

Finally, the value of the shape factor can be found as the zero of the following
function:


pi

T∑
t=1
γt(i)qi(Yt)

pi
2 −1(Yt − µi)

2

T∑
t=1
γt(i)


1
2

−


p2i

T∑
t=1
γt(i)qi(Yt)

pi
2 −1|Yt − µi|

pi

T∑
t=1
γt(i)


1
pi

= 0, i = 1, . . . ,N (49)

Eq.49 depends on the scale factor and the mean value, thus, the model
parameters have to be estimated through an iterative algorithm that can be
summarized as follows:

step 1 : Assume an initial guess for µi and σi;

step 2 : Calculate the shape factor pi through Eq.49 by means of a zero finding
algorithm;

step 3 : Re-estimate µi and σi through Eq.40a and Eq.40b, respectively;
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Initial guess of μi and Σi

Calculation of p

Estimation of (μi,Σi)NEW

abs(μi NEW-μi) < ε ?
abs(Σi NEW-Σi) < ε ? 

PARAMETERS DEFINED

YES

μi = μi NEW
Σi = Σi NEW

NO

Figure 29: Flow chart of the algorithm for the estimation of the generalized Gaussian
parameters

step 4 : Repeat Step 2 and Step 3 until convergence.

This iterative parameter estimation algorithm (described with the flow chart in
Fig.29) goes inside Step 3 of the main model iterative algorithm (Fig.28) and,
starting from the computed parameters it is possible to extract the optimal
state sequence for the operating life of the considered system.

4.3.2 Extension to multi-variate generalized Gaussian Hidden Markov Models

The effectiveness of the HMMs for prognostic purposes can be highly improved
through the exploitation of several different observation sets, i.e. considering
more than a single diagnostic parameter for describing the damaging process,
moving from an observation vector to an observation matrix as:

Y =

Y11 . . . Y1K
... . . . ...
YT1 . . . YTK

 (50)

where T is the dataset length and K is the number of components. The analysis
of different parameters for the same HMMs allows the extension of the model
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to more complex systems where the interaction between many components
has to be taken into account. For this general case, each component of the
mixture distribution described in Eq. 26 is represented by a multivariate PDF
which dimension is defined by the number of considered observation vector.

For a multivariate GGD which components are s-independent, i.e. describing
different characteristics of the system, the PDF is defined as:

f(X) =

K∏
k=1

pk

2K|Σ|
1
2

K∏
k=1

Γ
(
1
pk

)e
− K∑

k=1

 |Xk−µk|

Σ

1
2
k

pk


(51)

where the shape factor vector, the covariance matrix, i.e. the scale factor matrix,
and the mean vector are defined as:

P = [p1 . . . pk . . . pK] (52a)

Σ =


. . . 0

Σk

0
. . .

 (52b)

µ = [µ1 . . . µk . . . µK] (52c)

respectively. According to the procedure described for the monovariate distri-
bution case, after expressing the PDF through the quadratic form, it is possible
to calculate the distribution’s parameters through the following equations:
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µik =

T∑
t=1
γt(i)

(
K∑
k=1

pikq
i
k(Ytk)

pi
k
2 −1

)
Ytk

T∑
t=1
γt(i)

K∑
k=1

pikq
i
k(Ytk)

pi
k
2 −1

, i = 1, . . . ,N (53a)

Σik =

T∑
t=1
γt(i)

(
K∑
k=1

pikq
i
k(Ytk)

pi
k
2 −1

)
(Ytk − µ

i
k)
2

T∑
t=1
γt(i)

, i = 1, . . . ,N (53b)


T∑
t=1
γt(i)

(
K∑
k=1

pikq
i
k(Ytk)

pi
k
2 −1

)
(Ytk − µ

i
k)
2

T∑
t=1
γt(i)


1
2

=

pik
T∑
t=1
γt(i)

(
K∑
k=1

pikq
i
k(Ytk)

pi
k
2 −1

)
|Ytk − µ

i
k|
pik

T∑
t=1
γt(i)


1

pi
k

, i = 1, . . . ,N

(53c)

where the notation µik refers to the parameter of the k-th components of the
i-th state related multivariate distribution. The complete proof for the case of
multivariate distributions is detailed described in Appendix A.2.

4.4 experimental validation on real vibration signals

This section provides the validation of the proposed HMM through the analysis
of several run to failure tests taking into account both academic test benches
and real industrial machines. The validation aims to demonstrate several
aspects:

• The improvement given by the proposed approach based on the GGD
with respect to the classic methods based on the GD in terms of fitting
quality.
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• The enhancement reachable through the exploitation of a cyclostationary
index as model observation.

• The effectiveness of the proposed model also for the prognostics of com-
plex systems through the consideration of the multivariate distributions

4.4.1 Comparison between Gaussian and generalized Gaussian based HMMs

The first experimental validation deals the analysis of the Dataset 1.2 related to
the run to failure test performed on the bearing test bench at the University of
Ferrara. For the sake of clarity, it has to be remembered that this test has been
stopped after 13 days due to a rolling element defect as detailed described in
Sec.2.3. The time RMS (which trend during the entire test is shown in Fig.30(a))
has been selected as the observation vector for the comparison between the
results obtainable through both Gaussian based and generalized Gaussian
based HMM.

Due to the availability of only one test, the same dataset has been exploited
for both training phase and validation process. For this purpose the obser-
vation vector has been divided into two separated datasets with the same
length and composed by samples picked alternatively from the main vector,
as shown in Fig.30. For the Gaussian case, the training process has been per-
formed through the algorithm described in Fig.28 and the parameters of the
conditional PDFs have been estimated according to Eq.35a and Eq.35b. For
the generalized Gaussian case, the model has been trained through to the
iterative algorithm summarized in Fig.29 and the model parameters have been
calculated according to Eq.45a, Eq.45b and Eq.49.

Tab.8 reports the estimated values of the transition probabilities matrix A
and the prior probabilities vector π. It can be immediately note that the values
obtained by applying the two bases distributions do not differ significantly
in the two cases. The form of A depicts the main assumption made for the
considered models: the system follows a first order left-right model (better
known as Bakis model [109]), i.e. the degradation process is irreversible and
the transition regards only successive states. The parameters of the conditional
PDFs between observations and actual state are reported in Tab.9. These values,
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Figure 30: RMS values from Dataset 1.2 of the University of Ferrara test bench: (a)
overal RMS trend, (b) training dataset, (c) validation dataset

Table 8: Model parameters: initial state and transition probabilities

Gaussian Generalized Gaussian

A
0.98 0.02 0 0.99 0.01 0

0 0.93 0.07 0 0.97 0.03

0 0 1 0 0 1

π 1 0 0 1 0 0

combined with the comparison between estimated PDFs and observation
distribution illustrated in Fig.31, explain the problem statement at the base
of the proposed HMM. In the first state, i.e. system under healthy conditions,
the data distribution is clearly Gaussian and consequently the results for the
two analysis are strictly comparable. Moving to the second state, i.e. early
damaging stage, the data distribution seems to still be Gaussian but it starts to
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Table 9: Estimated parameters of the conditional PDFs

State Gaussian Generalized Gaussian
# µ σ µ p Σ

1 1.09 0.23 1.12 2.01 0.35

2 4.78 1.31 5.06 1.93 2.14

3 12.1 2.45 13.8 2.61 1.25

Figure 31: Results of the training step in term of estimated PDFs for: (a) Gaussian
distribution, (b) generalized Gaussian distribution

move away from the ideal condition and consequently the two distributions
presents a slight difference (the generalized Gaussian is flatter and with a
slight higher mean value). The main difference regards the last state, i.e. the
damaging process is in an advanced stage, where the generalized distribution
presents a sensibly higher mean value and the distribution forms are strongly
different. For this comparison, the fitting quality is no longer evaluable through
the BIC value due to the different number of model parameters between
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Table 10: Maximum log-likelihood and dimensionality for the compared HMMs

Model Max Log-likelihood Dimensionality

Gaussian -26.78 6

Generalized Gaussian -22.59 9

the distributions. For the same purpose, a suitable tool is represented by
the Likelihood Ratio (LR) test [110]. This method compares two different
statistical models with known parameters on the base of the ratio between
their maximized likelihood functions over the entire space parameters. The
main constrain of the method is given by the need of a relation between the
families of the two models, i.e. one of the competing models must be obtained
from the other one through the application of some constrains. Tab.10 reports
the maximized log-likelihood and the dimensionality, i.e. the number of free
parameters, of both models. The LR test statistic, defined as twice the difference
between the maximized log-likelihoods, for the comparison of the Gaussian
model with the generalized Gaussian one is 8.38. It has been demonstrated that
the LR, for large number of samples, follows a χ2 distribution with degrees of
freedom equal to the difference among the number of parameters of the two
models. The 95% quartile of the χ2(3) distribution is 7.81 and consequently
the GGD should be chosen as the one that better fits the observation data.

The models described by the parameters summarized in Tab.8 and Tab.9
have been validated through the part of observations illustrated in Fig.30c.
Fig.32 describes the state sequences estimated on the validation dataset with
both Gaussian and generalized Gaussian models. Both state sequences re-
produce correctly the RMS trend depicted in Fig.30(c) also according to the
data distribution shown in Fig.31. However, the comparison between the two
sequences allows some important considerations. The main one regards the
sparse points present in the first state (see Fig.32(a)). These points correspond
to isolated peaks in the RMS trend (see samples 12 and 50 of Fig.30(c)) and the
Gaussian based method understand these peaks as a state transition although
the system remains in healthy conditions, i.e. the model should remain in state
1. In this context, the generalized Gaussian mixture allows the overcoming of
this issue and these points are considered in state 1 although the slight RMS
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Figure 32: Estimated state sequences from: (a) Gaussian model, (b) generalized Gaus-
sian model

increment avoiding an unnecessary alarm regarding the health state of the
system. This aspect clearly explains the higher robustness of the proposed
model with respect to outlier comprised into the observation vector related to
uncertainties given by the physical system, the measuring chain and the signal
processing techniques exploited for the calculation of the diagnostic indicators.

Another interesting aspect regards the state transitions. Taking into account
the first transition, i.e. from healthy condition to incipient fault appearance,
both methods move from the first state to the second in the same time span, i.e.
with the same sample of the observation trend. This behaviour is easily under-
standable being the detection of the fault appearance strongly driven by the
diagnostic capability of the indicator considered for the HMM. Consequently,
the transition to the first damaging stage does not depend on the considered
prognostic model and different distributions should not affect the results. On
the other hand, the transition from early damage to heavy damage stage,
i.e. from state 2 to state 3, highlights the departure of the data distribution
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from the ideal Gaussian conditions in the last part of the working life. The
Gaussian case estimates a distribution with a lower mean value (see Fig.31(a))
that does not reproduce the actual data distribution in the last stage. For this
reason, the transition from state 2 to state 3 occurs earlier in the Gaussian case
with respect to the generalized Gaussian case where the state sequence better
reproduces the effective damage development. The transition to the heavy
damage stage is pivotal in order to program maintenance operations, thus the
correct transition estimation enables a more effective maintenance program,
avoiding unnecessary machine downtimes related to an ahead of schedule
system fixing.

From the same point of view of predictive maintenance, the main target
of each prognostic models is the estimation of the RUL. In general, a system
should be considered as in failure if some diagnostic indicator crosses a critical
threshold or the system reaches the last state of the prognostic model. Over
the years, several RUL prediction methods have been proposed. They can be
mainly divided into two main families [111]: observation based method, i.e.
based on the trend of the diagnostic indicator considered for developing the
model, and state-based method, i.e. based on the state sequence estimated
through the Viterbi algorithm. In order to highlight the different behaviour
of the two base distributions (described by the estimated state sequences in
Fig.32) it should be suitable to estimate the RUL on the validation dataset
through a state-based method. In this direction, Medjaher et al. [112] proposed
an estimation algorithm based on the stay time of the system into each state.
According to this method, the RUL is defined as:

RULt =

N∑
i=currentstate

υiµd(Si) − tac(t) (54)

where υi is the number of possible visits to the state Si, i.e. the number of
blocks of consecutive samples in the same state, µd(Si) is the mean stay time
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Table 11: Mean time and number of visits in each state for the compared HMMs

S1 S2 S3

µd(h) Z µd(h) Z µd(h) Z

Gaussian 58.7 3 21.3 3 14 1

Generalized Gaussian 90 1 32 1 10 1

in each state and tac(t) represents the time spent in the active state at the time
span t. µd(Si) and tac(t) are defined as:

µd(Si) =
1

Zi

Z∑
z=1

∆(Siz) (55a)

tac(t) =

0 St ̸= St−1
tac(t− 1) +∆t St = St−1

(55b)

where Zi is the number of visits at state Si, ∆(∗) stands for the visit duration
and ∆t is the time span between two consecutive samples in the observation
vector. Tab.11 summarizes the mean duration and the number of visits for
each states starting from the state sequences estimated for the validation set
through both Gaussian and generalized Gaussian HMM. The RUL definition
given in Eq.54 leads to a result that underestimates the RUL in the first state,
i.e. healthy conditions, but enhances the estimation quality for the last model
states, i.e. the prediction error decreases with the damage evolution. This
particular aspect is pivotal for industrial application where the critical stages
are related to the appearance and the following evolution of the damage
and consequently the effectiveness of the prediction has to be higher in the
last part of the working life. The RUL estimated according Eq.54 taking into
account both Gaussian and generalized Gaussian HMM are compared to the
actual RUL in Fig.33. The previous depicted consideration about the main
characteristics of the estimation method is clear visible. The difference between
the predicted patterns (dotted and dash-dotted line) confirms the behaviour of
the estimation method with a decreasing error for an increasing test progress.
In particular its is interesting to note that the proposed HMM leads to an
estimated state sequence that allows the estimation of the correct RUL in the
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Figure 33: Comparison between estimated RUL and real RUL for the validation dataset

last stage of the damaging process, i.e. after sample 120, despite an initial
prediction error not negligible (around 15%). The effect of the different state
sequences estimated with the Gaussian HMM and the generalized Gaussian
HMM can be immediately understood by comparing the respective predicted
RUL. The previous discussion highlights two main points of improvement: the
robustness with respect to possible sparse points inside the observation trend
and the better fit of the data distribution in the last state. Between them, the
first one is the aspect with more specific weight on the RUL prediction. In the
first part (until sample 12) the two base distributions lead to the same result.
From this point, the presence of a sparse value that is detected in the second
state (despite the healthy conditions of the system) reflects on a peak in the
RUL trend. Starting from this discontinuity the trend is parallel to the one
related to the generalized case. Consequently, the overall trend from sample
12 to the end is shifted down and presents another discontinuity at sample 51,
i.e. the second state error in the estimated sequence for the Gaussian HMM.
Moving to the last part of the RUL (from sample 118 of Fig.33 corresponding
to the 0 of the Gaussian RUL), the underestimation obtained by the Gaussian
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Table 12: Metrics values for evaluating the prediction performance

RMSE (/) Precision (/) MAPER (/)

Gaussian 62.4 26.1 45.1
Generalized Gaussian 34.5 18.2 17.8

analysis, combined with the earlier transition to the last state, leads to an
earlier prediction of the end life, confirming how previous stated analysing
Fig.32.

The prediction quality can be quantitatively measured through several
indicators [113]. For this experimental validation three different criteria have
been considered: the Root Mean Square Error (RMSE), the Precision and the
Mean Absolute Percentage Error (MAPER), defined as:

RMSE =

√√√√√ T∑
t=1

(Et)

T
(56a)

Precision =

√√√√√ T∑
t=1

(
Et − Ē

)2
T

(56b)

MAPER =
1

T

T∑
t=1

∣∣∣∣∣100 ∗ EtRULt

∣∣∣∣∣ (56c)

where RULt is the real RUL at time t, ˆRULt is the estimated RUL, Et =

RULt − ˆRULt is the error and Ē is the mean error defined as:

Ē =
1

T

T∑
t=1

Et (57)

Tab.12 reports the values computed for all the metrics in both cases. All the
indicators confirm the qualitative consideration described starting from Fig.33

highlighting the better performance of the proposed HMM. In particular the
more considerable differences are related to the RMSE and the MAPER being
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them directly related to the error function without the introduction of the mean
error considered for the calculation of the Precision. In fact, the higher mean
error for the Gaussian case compensates for the higher instantaneous error,
leading to a lower difference between the cases for this particular criterion.

The experimental validation described in this section demonstrates the im-
provement given by the exploitation of the generalized Gaussian mixture
distribution as the base PDF for the construction of the HMM. The effective-
ness enhancement regards in particular the better fitting quality in the last
states, confirming the departure of the observation distribution from the ideal
Gaussian case in these stages. The proposed method also proves to avoid
possible estimation errors due to state outliers in the observations vector, sim-
plifying the RUL estimation through state-based prediction algorithms. Being
the comparison between different base PDFs the target of this validation, the
RMS trend has been considered as the observations of the model. However,
the exploitation of criteria particularly designed for the fault detection may
improve the prognostic capability of the proposed HMM through a better
description of the degradation process.

4.4.2 Exploitation of cyclostationarity for bearing prognostics through generalized
Gaussian hidden Markov Models

In general, the prognostic effectiveness of the HMM is directly related to the
capability of the diagnostic indicator, i.e. the observation vector, to describe
the appearance and the evolution of a possible defect. For this reason, in
this experimental validation the ICS2FB described in Chapter3 is considered
as the physical observation for training and validating a GGHMM for the
prognostics of a rolling element bearing. The analysis presented in this section
has been performed on the Campaign 2 provided by the IMS. The BPFO related
ICS2FB vector (already shown in Fig.24) has been normalized with respect to
its maximum value in order to speed up the convergence of the algorithm. The
target of this experimental analysis is the demonstration of the ability of the
proposed method to describe the degradation process even for observation
trends not monotonically increasing and consequently the main attention has
to be pointed out on the estimated state sequence justifying the decision of
normalizing the data. The data has been divided into a training dataset and
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Figure 34: BPFO related ICS2FB values for Campaign 2 of IMS dataset: (a) Overall
dataset, (b) data distribution, (c) training dataset, (d) validation dataset

a validation dataset with the same length with the protocol described in the
previous section. The overall dataset, the training set and the validation set are
displayed in Fig.34 together with the data distribution. The trend described in
Fig.34(a-c-d) describes the idea at the base of this analysis. The degradation
process reaches a first peak due to development of pitting on the outer race.
Then, the damaging level decreases due to the smooth of the defect area before
a final stage of increment that leads to the final failure. According to the data
distribution shown in Fig.34(b) the model has been built taking into account
three finite states, i.e. healthy, early damage and heavy fault.

Tab.13 summarizes all the model parameters estimated through the iterative
algorithm described in Fig.29. The form of the transition probabilities matrix
A is directly related to the degradation trend on the outer ring. The decrease
of the ICS2FB values around sample 400 of the training dataset disables the
exploitation of a pure left-to-right HMM due to the possibility of transitions
from the last state to the second one before the final failure. Consequently, the
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Table 13: Model parameters for the analysis of the IMS dataset: initial state and
transition probabilities

Model parameters

A
0.99 0.01 0

0 0.90 0.10

0 0.08 0.92

π 1 0 0

Figure 35: Comparison between original observation distribution and estimated PDFs
for the analysis of the IMS dataset

element a32 can not be set to zero but has to take into account the possible
reversible process. The same back transition can not be possible between
the first two stages, i.e. once the fault appears it is impossible to come back
to the healthy state, and the element a21 can be set to 0. The estimated PDF
parameters are summarized in Tab.14 and the resulting functions are compared
to the real observation distribution in Fig.35. It is interesting to underline how
once again the values of the shape factor p describe the basis idea behind the
exploitation of the GGD. In the healthy state the distribution remains Gaussian,
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Table 14: Estimated parameters of the conditional PDFs for the analysis of the IMS
dataset

State# µ p Σ

1 0.06 2 0.04

2 0.41 2.2 0.14

3 0.73 2.2 0.15

Figure 36: Estimated state sequence for the analysis of IMS validation dataset

i.e. p = 2, and the model seems to guarantee a good fitting quality both in term
of mean value and data dispersion. Looking to the faulty stages, i.e. the second
state and the third one, the data distribution moves away from the Gaussian
case going towards a uniform distribution. This behaviour is confirmed by
the increment of the shape factor and the scale factor for both distributions
leading to flatter PDFs. It should also be noticed that the data distributions of
the last states are similar both in form and amplitude and this aspect is caught
by the estimated density functions that differ only in the mean value.

Fig.36 depicts the estimated state sequence for the validation dataset shown
in Fig.34(d). The attention has to be focused on the last part of the state
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Figure 37: Estimated RUL for the analysis of IMS validation dataset

trend. The exploitation of a cyclostationary indicator as model observation
enables the correct identification of the instantaneous health condition of the
system. In fact, the slackness of the left-to-right model constrain allows the
correct reproduction of the actual damaging process of the bearing. After
reaching the state 3, i.e. the first heavy pitting on the outer race, at sample
330, the system return in state 2 due to the smoothing of the damaged area.
Finally, after sample 410 the model moves for the last time to state 3 reaching
the damaging level that leads to the bearing failure. The uncertainty on the
identification of the transition between the real data distribution of state 2

and state 3 (around normalized ICS2FB = 0.55 in Fig.35) reflects on a not clear
transition from state 2 to state 3 at sample 330. However, the proposed model
limits this critical aspect as confirmed by the low number of outlier samples,
i.e. sparse points in a state that differs from the one related to the neighbouring
samples. This possible issue regards only the first transition due to the steeper
increasing trend related to the last transition that leads to the final failure, as
demonstrated in Fig.36.
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The estimated RUL is compared with the real RUL in Fig.37. The RUL has
been estimated through Eq.54 starting from the state sequence illustrated in
Fig.36. The result confirms the behaviour of the considered RUL prediction
method characterized by the underestimation in the healthy stage and a
increasing prediction quality for increasing damaging level. One of the critical
points highlighted in the previous experimental validation is represented by
the spikes in the RUL due to the sparse samples in the state sequence. Taking
into account the uncertainty in the detection of the transition between state
2 and state 3 (sample 330), it is possible to note that the discontinuity in the
RUL is reduced with respect to the previous analysed case. This behaviour
can be understand through the different positions of the sparse points in the
two analysis. For the current analysis, the sparse points are strictly connected
to the transition phase and consequently are not related to anomalies in the
observation vector. The previous analysis presented outliers in the first state
far from the transition. As a result, the two types of outlier reflect on a different
specific weight in the predicted RUL with a slighter effect if the outliers are
the consequence of a physical uncertainty instead of a measuring issue.

A further validation of the cyclostationary application of the proposed HMM
can be obtained through the analysis of the other bearing components, i.e. the
BPFI and BSF, that remain under healthy conditions during the entire run to
failure test being the outer race fault the only one detected on the physical
system. The ICS2FB trend and distribution taking into account BPFI and BSF
are displayed in Fig.38. The cyclostationary indicator has been normalized
through the maximum value of the BPFO related trend in order to enable the
application of the model parameters previously described in Tab.13 and Tab.14.
It is clear that both trends remain constant during the overall test (Fig.38(a-b))
and the data distribution is comprised in the state 1 related mixture component,
in accordance with the effective health condition of these bearing components.
The resulting state sequences are displayed in Fig.39. The results confirm how
both components remain in health state, i.e. state 1, for the entire test according
to the data distribution shown in Fig.38(c-d). Although the data dispersion for
the BSF can be considered as irrelevant (Fig.38(b)), it is possible to note for the
BPFI (Fig.38(a)) several possible outliers, i.e. the distribution is unbalanced in
direction of the right tail. Despite this behaviour, the resulting state sequence
does not present sparse outliers, confirming the robustness of the proposed
method with respect to interferences in the measurement chain.
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Figure 38: ICS2FB trend and distributions for BPFI and BSF: (a) BPFI related nor-
malized ICS2FB trend, (b) BSF related normalizedICS2FB trend, (c) BPFI
related normalized ICS2FB distribution, (d) BSF related normalized ICS2FB
distribution

The above described experimental validation illustrates how the effectiveness
of the proposed HMM for the bearing prognostics can be improved considering
a cyclostationary criterion as bases observation for the training of the model.
The exploitation of this kind of indicator, combined with the removal of the
constrain of pure left-to-right model, allows a better reproduction of the fault
evolution improving the capability of the model on the RUL prediction. The
analysis of the healthy parts proves how the GGHMM guarantees the robust-
ness with respect to possible measuring interferences avoiding state transitions
although no damage evolution occurred. Both validations already analysed
regard a single component, e.g. a rolling element bearing, where a monovariate
model, i.e. a single observation set, enables the correct damaging process
description and proves its prognostic effectiveness. However, the industrial
word requires the analysis of complex systems, where several components may
reach failure. In this context, there is the need of exploiting more indicators
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Figure 39: Estimated state sequences taking into account other bearing components:
(a) BPFI, (b) BSF

for describing all the possible damaging sources, i.e. a multivariate model is
required.

4.4.3 Multivariate HMM for the prognostics of complex mechanical systems

The last experimental validation deals with a real industrial case study regard-
ing a planetary gearbox. The target of the analysis of a complex system is the
demonstration of the possibility to exploit the GGHMM for the detection and
prediction of several kind of faults through the training of the model with more
than a single observation vector, i.e. with a multivariate generalized Gaussian
mixture distribution. The experimental setup is described in Fig.40. The three
stages planetary gearbox under test (hereafter called reducer) is driven by an
electric motor and coupled to a second identical gearbox (from now named
multiplier) driven by an electric motor working as brake for increasing the
contact forces between the teeth. The test has been performed at constant
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Multiplier
Reducer

Accelerometer 1Accelerometer 2

Electric motor

Brake

Figure 40: Experimental setup for the analysis of the gearbox run to failure test

speed with two different values of torque applied (for confidentiality reasons
called low and high). The presence of different test conditions may bring to
light another interesting aspect: each model state does not only represent a
damaging level but may also discriminate several working conditions [97].
The vibration signal on the reducer has been measured with an industrial
monoaxial accelerometer and the tachometer signal on the input shaft has been
acquired through an encoder mounted on the electric motor shaft. The test has
been stopped after 5 days and a deep pitting on the elements, i.e. sun gear,
planets and anulus, of the second stage has been found after the inspection on
the physical system.

The diagnostic indicators to be considered as physical observations for the
training phase of the model should be able to detect the presence of differ-
ent types of fault and thus a suitable solution is the selection of criteria that
analyse the vibration signal in a general way, without focusing on a particular
components (main characteristics of cyclostationary indicators or the TSA
for example). For this purpose, for the HMM presented in this section, two
observation dataset have been considered: the RMS and the Kullback-Leibler
Divergence (KLD) calculated on the raw vibration signal. The KLD, also known
as relative entropy, is a measure of distance between two distribution [114]
where one of them is taken as reference. For this case study the KLD has
been calculated for each acquisition considering the first sample as reference,
under the hypothesis that the system is healthy in this time span. The system
degradation should reflect on modifications of the signal distribution from
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Figure 41: Experimental observation from Accelerometer 1: (a) RMS values, (b) KLD
values, (c) RMS distribution, (d) KLD distribution

the ideal Gaussian condition and consequently the KLD should increase with
the damage evolution. The evolution of the RMS and the KLD during the
entire run to failure test is displayed in Fig.41(a-b). The RMS value is strongly
dependent on the applied torque due to its energetic nature and this behaviour
can be seen in the discontinuity around sample 9500. On the other hand, the
load effect on the KLD value has a lower specific weight being this indica-
tor based on the data distribution. These difference behaviours are clearly
explainable also through the observation distribution shown in Fig.41(c-d).
Both distributions are represented by a mixture of three components. The
first one is related to the data acquired under the lower torque and the others
refers to the test with the higher load applied. The RMS distribution (Fig.41(c))
is characterized by a clear division between the first state and the others re-
lated to the higher torque. On the contrary, in the KLD distribution the three
components are connected each other, confirming the lower influence of the
load on a generic distribution based diagnostic indicator. The exploitation of
two observation datasets entail a bivariate basis PDF for the construction of
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Figure 42: Bivariate PDFs from RMS and KLD distributions: (a) 3D view, (b) contour
plot

the HMM. The different natures of the chosen criteria allows the assumption
that these components can be considered as s-independent, thus the bivariate
PDF can be expressed according to Eq.51. Fig.42 shows the bivariate mixture
PDF obtained from the independent monovariate components described in
41(c-d). From the contour plot (Fig.42(b)) the three components of the mixture
density are clearly identifiable and it is possible to split the graph into the
low torque area (down-left) and high load area. In the latter, two states can
be identified, each one related to a different damaging level (being the test
conditions constant in this area). As already done in the previous chapter, the
datasets have been separated in two different parts with the same number of
samples, i.e. the training dataset and the validation dataset.
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Table 15: Model parameters for the analysis of the planetary gearbox dataset: initial
state and transition probabilities

Model parameters

A
0.986 0.014 0

0 0.884 0.116

0 0 0.1

π 1 0 0

Table 16: Estimated parameters of the conditional PDFs for the analysis of the plane-
tary gearbox dataset

State RMS KLD
# µ p Σ µ p Σ

1 0.52 2 0.05 0.088 2 0.04

2 0.68 2.3 0.12 0.26 2.4 0.14

3 0.82 2.4 0.15 0.53 2.6 0.16

The estimated model parameters are reported in Tab.15 and Tab.16. It should
be noticed that the probability matrix A has been defined in the same form of
a pure left-to-right model. This can be done because the two applied torques
have been test in a sequential way without coming back to the lower value.
If the two conditions had been tested alternatively, the element a21 could not
be set to 0. Analysing the parameters of the bivariate PDFs (Tab.16), the main
attention should be pointed out on the shape factor p. In the first state, i.e.
the condition of lower load, the value is comparable to the Gaussian reference
for both distributions confirming the PDF shape in Fig.41(c-d). Moving to the
second state, i.e. the first state with higher torque, both distributions of RMS
and KLD seem to depart from the ideal Gaussian shape, as confirmed by the
higher shape factor. This behaviour is interesting because brings to light the
possible appearance of an early damaging stage. In fact, as already discussed
in the previous experimental validation, the observation distribution starts to
move away from the Gaussian when the damaging process is ongoing. The
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Figure 43: Estimated mixture of bivariate PDFs for the training dataset

application of an higher load should not changing the observation distribution
and consequently the increasing of the shape factor should detect a possible
fault appearance. Finally, in the last stage where the fault severity is relevant
both distributions (in particular for the KLD) are flatter and consequently far
from the Gaussian condition. The mixture of bivariate GGDs obtained from
the values in Tab.16 is illustrated in the contour plot in Fig.43.

The above described model has been validated through the RMS and KLD
datasets shown in Fig.44(a-b). The resulting state sequence is depicted in
Fig.44(c). The sensitivity of the RMS with respect to the different loads applied
enables the correct estimation of the transition between state 1 and state 2.
On the other hand, it is possible to note how both diagnostic indicators do
not present a sudden increment on the trend related to the fault appearance
but the damage developments seems to be gradual. This system behaviour
reflects on the presence of an uncertainty phase during the transition from state
2 to state 3. This unfavourable conditions is increased by the physiological
fluctuation of the KLD values being it based on the comparison between
two data distributions instead of a direct calculation on the vibration signal.
However, despite the increment of the fluctuation amplitude in the last stages
of the degradation process, the model demonstrate its robustness with respect
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Figure 44: Estimated state sequence for the validation dataset: (a) RMS values, (b)
KLD values, (c) estimated state sequence

to possible outliers in the last part of the test that may lead to an overestimation
of the RUL.

This experimental validation demonstrated how the application of a multi-
variate GGHMM enables the prognostics of complex system characterized by
several possible fault sources. The exploitation of observation vectors repre-
sented by diagnostic criteria that describe the overall damaging level of the
system increments the model effectiveness embracing all the possible failure
modes. In addition, the analysis of a run to failure test performed with differ-
ent test specifications proved the ability of the proposed HMM to discriminate
the different working condition even if applied for the system under the same
health state.
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4.5 summarizing remarks

In this chapter, a novel approach for the development of HMMs for prognostic
purposes has been proposed. The model is based on the GGD as the mixture
components for describing the fault appearance and evolution. The exploitation
of a generalized PDF enables a better fitting quality for the distribution of the
physical observation, i.e. the trend of some diagnostic indicators, specially in
the last stages of the damaging process where these PDFs depart from the
ideal Gaussian shape. An iterative algorithm for the estimation of the model
parameters has been defined and the resulting model has been validated on
real systems from both academic and industrial word. The aforementioned
activity led to the following interesting results:

• A new HMM has been proposed exploiting a generalized basis distri-
bution in order to take into account possible modification during the
working life due to the evolution of the damaging process. An iterative
algorithm for the estimation of the model parameters has been proposed
both for the case of monovariate distribution, i.e. a single observation
vector, and multivariate PDFs, i.e. several observation vectors.

• The practical implication of the different basis distribution has been
demonstrated through the analysis of a run to failure test performed
on the bearing test bench of the University of Ferrara. The comparison
has been carried out in order to prove how the proposed model allows
a better description of the damaging evolution, in particular in the last
stages near the final failure. This aspect has been quantitatively demon-
strated through a statistical test. Moreover, this experimental validation
demonstrated how the robustness of the GGD avoids possible errors
in the state estimation due to measuring problems, leading to a better
estimation of the RUL.

• The analysis of the IMS run to failure test highlights how the exploitation
of indicators fitted for the damaging description, e.g. cyclostationary
indicators, as physical observations improves the model effectiveness,
in particular for the analysis of not monotonically increasing damaging
processes. This analysis underlines the close link between diagnostics
and prognostics demonstrating the importance on selecting the correct
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observation set for training the model in order to increase the model
capability on following the fault evolution.

• The study of a real industrial case on a planetary gearbox has been taken
into account for demonstrating how the exploitation of a multivariate
model enables the prognostics of complex system characterized by several
possible damaging sources. This validation demonstrated also how the
model states may not only be related to different damaging level but also
to different working conditions.

The main aspect of originality proposed in this chapter regards the definition
of an iterative algorithm for the estimation of the model parameters for the
GGD as basis function for the construction of an HMM. All the theoretical
consideration depicted in this chapter have been supported by several ex-
perimental validation on run to failure test performed on single mechanical
components or more complex system from both the academic and industrial
word.
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5
F I N A L R E M A R K S

This thesis has been focused on the diagnostics and prognostics of rotating
machines through cyclostationary techniques, highlighting the strict connection
between the two fields.

After a brief introduction regarding the state of art of diagnostic signal
processing techniques in Chapter 1, Chapter 2 described an overview about the
experimental datasets used for validating the algorithms proposed in the thesis.
These datasets are composed by vibration signals acquired on the bearing test
bench at the University of Ferrara during several typologies of test, e.g. run to
failure or stationary tests.

Chapter 3 has been focused on the development of a new BD method based
on the combination between the cyclostationary theory and the FBSE. The
FBSE has been taken into account for improving the diagnostic effectiveness of
the cyclostationary based BD through a series expansion that better describes
the mathematical nature of the fault related impulsive signal. The proposed
cyclostationary criterion, named ICS2FB, has been defined and the resulting
method, named FBBD, has been compared with the other cyclostationary based
BD method considering both simulated and real vibration signals.

Taking into account simulated signals reproducing cyclostationary patterns
under both stationary and non-stationary working conditions, the effectiveness
of the FBBD has been investigated in comparison to the other cyclostationary
BD method both in qualitative and quantitative terms. This analysis demon-
strated how the exploitation of the FBSE enables the reduction of the number of
harmonics of the cyclic frequency required for the description of the impulsive
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excitation, consequently reducing the computational costs of the algorithm. In
this contest, the proposed method also proved to guarantee a lower residual
background noise in the estimated source, enabling the detection of the weak-
est peaks. The analysis of simulated signals proved also the robustness of the
proposed method to the presence of possible interferences that may mask the
target fault related pattern. This experimental validation also demonstrated the
robustness of the method with respect to the free parameters of the algorithm
such as the FIR filter length and the cyclic period to be investigated.

Moving to the real signals, the diagnostic capability of the proposed BD
indicator has been investigated through the analysis of several applications on
faulty bearings both from the academic and industrial world. The analysis of
several bearings with different fault sizes under both constant and variable
speed conditions has been taken into account for demonstrating the sensitivity
of the novel criterion to the damage severity. The analysis of a bearing run to
failure test demonstrated how the ICS2FB allows the real time assessment of the
damaging level during the entire operating life, describing the real degradation
evolution in all its stages. This validation has been also exploited for describing
the availability of the novel BD indicator as physical observation for building a
prognostic model, demonstrating the link between the two fields.

The main aspect of novelty of this research activity is represented by the
rewriting of the existing ICS2 through the FBSE in order to define a novel
cyclostationary indicator that better fits the modulated nature of the classic
impulsive pattern related to a faulty rotating machine. The direct exploitation
of cyclostationarity in BD has been recently proposed and the only existing
method, named CYCBD, is based on the classic FSE. Consequently, the pro-
posed criterion improves the diagnostic capability allowing a better fitting
quality of the target sources. A complete study is provided, from the analyti-
cal formulation of the proposed method to the numerical and experimental
validation. Moreover, the mathematical definition has been extended to the
angular domain enabling the fault detection under variable regimes in order
to avoid possible issues related to the speed fluctuations, pivotal aspect in the
real industrial scenario.

Chapter 4 has been devoted to the development and validation of a novel
prognostic model based on the HMM. The proposed model considers the
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relation between physical observations and damaging state as driven by a
generalized Gaussian mixture distribution in order to allows distribution
modifications from the first states (healthy conditions) and the last states
(damaged system) based on the values of some distribution parameters. In
Chapter 4 a novel iterative algorithm for the estimation of the model parameters
starting from some diagnostic indicator as observation has been defined. The
proposed HMM has been validated through the analysis of several run to
failure tests regarding both single components, e.g. bearings, or more complex
systems, e.g. planetary gearboxes.

The analysis of single components, i.e. the validation of the monovariate
GGHMM, demonstrated the improvement given by the proposed model with
respect to the classic Gaussian HMM in terms of fitting quality of the real ob-
servation distribution. This validation proved how the observation distribution
in the last states moves away from the ideal Gaussian form. Consequently a
density function that enables the modification of the function form among all
states allows a better assessment of the actual damaging level leading to a more
accurate estimation of the RUL. The comparison highlighted the robustness
of the GGHMM with respect to possible outliers on the observation vector
that may reflect on issues in the state estimation and consequently in the RUL
prediction.

The exploitation of the ICS2FB as model observation demonstrated the effec-
tiveness of the proposed method in the assessment of the damaging evolution
in case of not monotonically increasing fault severity (like the classical pitting
evolution on rolling element bearings). This particular experimental validation
explained how the selection of a diagnostic indicator particularly designed
for the application object of study strongly improves the effectiveness of the
prognostic model justifying the aforementioned relations between diagnostics
and prognostics.

The analysis of a planetary gearbox demonstrated the effectiveness of mul-
tivariate GGHMMs for the prognostics of complex systems where several
different damaging sources may lead to the final failure. In this contest, the
selection of diagnostic indicators sensitive to the overall damaging level as
model observations proved to be effective for the application of the proposed
HMM. In this contest the GGHMM demonstrated its ability also in discrim-
inating between different test conditions, e.g. different loads applied on the
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system, removing the requirement of stationary conditions for the application
of the prognostic model.

For this second research activity, the originality is represented by the es-
timation algorithm proposed for the estimation of the model parameters in
case of generalized Gaussian density function. As the author is aware, the
existing HMMs consider the same distribution for all the model states and
consequently do not take into account the changes of distribution related to
the appearance and evolution of the fault. The proposed model overcomes this
limitation through a generalized distribution that may assume several different
forms according to the values of the model parameters. The mathematical
formulation of the novel iterative algorithm has been also defined for the
case of multivariate distribution in order to extend the model applicability
for complex systems where a single observation set may no longer be able to
describe correctly the damaging process.
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A P P E N D I X : P R O O F O F E Q UAT I O N S

a.1 bd indicator in the angular domain

The Fourier-Bessel coefficients for a generic analog signal x(t) are defined as
[58]:

ckF =
2

T2J21(βk)

∫T
0
tx(t)J0

(βkt
T

)
dt (58)

where T is the signal time period and J0 and J1 the zero order and first order
Bessel functions, respectively. Under the assumption of time/angle dependent
signal, i.e. x = x(θ(t)), it is possible to apply a variable change:

ckF =
2

Θ2J21(βk)

∫Θ
0
θ(t)x(θ(t))J0

(βkθ(t)
Θ

)dθ
dt
dt (59)

where Θ is the angular position related to the time period T. This expression
can be simplified as follows:

ckF =
2

Θ2J21(βk)

∫Θ
0
θ(t)x(θ(t))J0

(βkθ(t)
Θ

)
θ̇(t)dt (60)

where θ̇(t) is the angular velocity, e.g. measured by a tachometer signal. Eq.60

can be rewritten for a generic digital signal x(n), viz:

ckF =
2∆t

Θ2J21(βk)

N−1∑
n=0

θ(n)x(n)J0

(βkθ(n)
Θ

)
θ̇(n) (61)
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whereN is the number of samples of x(n) and ∆t is the inverse of the sampling
frequency. After some simple manipulation, the final form is given by the
following:

ckF =
2

ΘΘ̇J21(βk)

N−1∑
n=0

θ(n)x(n)J0

(βkθ(n)
Θ

)
θ̇(n) (62a)

Θ =

N−1∑
n=0

∆θn (62b)

Θ̇ =

N−1∑
n=0

θ̇(n) =
Θ

∆t
(62c)

a.2 hmm parameter estimation for multivariate generalized

gaussian distributions

Under the hypothesis of s-independent components, the multivariate gener-
alized Gaussian PDF for a random multivariate variable X = [x1, . . . , xK] is
defined as:

f(X) =

K∏
k=1

pk

2K|Σ|
1
2

K∏
k=1

Γ
(
1
pk

)e
− K∑

k=1

 |Xk−µk|

Σ

1
2
k

pk


(63)

Eq.64 can be rewritten in order to express the PDF as function of a quadratic
form, viz:

f(X) =

K∏
k=1

pk

2K|Σ|
1
2

K∏
k=1

Γ
(
1
pk

)e
−

K∑
k=1


 |Xk−µk|

Σ

1
2
k

2


pk
2


(64)
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A.2 hmm parameter estimation for multivariate generalized

gaussian distributions

Remembering Eq.40a, Eq.40b and Eq.41, the derivative inside the square
bracket of Eq.41 is given by:

−2
∂fi(X)

∂qik(x)

∣∣∣∣∣
x=Ytk

= fi(X)

K∑
k=1

pikq
i
k(Ytk)

pi
k
2 −1, i = 1, . . . ,N (65)

Substituting Eq.65 into Eq.41 and taking into account the definition of forward
variable given in Eq.30b, the term ρt is:

ρt(i) = αt(i)

K∑
k=1

pikq
i
k(Ytk)

pi
k
2 −1, i = 1, . . . ,N (66)

Substituting Eq.66 into Eq.40a and Eq.40b the final form of mean values and
scale factors are defined as:

µik =

T∑
t=1
γt(i)

(
K∑
k=1

pikq
i
k(Ytk)

pi
k
2 −1

)
Ytk
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t=1
γt(i)

K∑
k=1

pikq
i
k(Ytk)

pi
k
2 −1

, i = 1, . . . ,N (67a)

Σik =

T∑
t=1
γt(i)

(
K∑
k=1

pikq
i
k(Ytk)

pi
k
2 −1

)
(Ytk − µ

i
k)
2

T∑
t=1
γt(i)

, i = 1, . . . ,N (67b)

Finally, according to the consideration depicted in Sec.4 the relation between
scale factor and variance can be written as function of the observations as:

T∑
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, i = 1, . . . ,N (68)
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appendix : proof of equations

For the sake of clarity it has to be remembered that the notation µik refers to
the parameter of the k-th components of the i-th state related multivariate
distribution.
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