We present an interface of the wavefunction-based quantum chemical software CFOUR to the multiscale modeling framework MiMiC. Electrostatic embedding of the quantum mechanical (QM) part is achieved by analytic evaluation of one-electron integrals in CFOUR, while the rest of the QM/molecular mechanical (MM) operations are treated according to the previous MiMiC-based QM/MM implementation. Long-range electrostatic interactions are treated by a multipole expansion of the potential from the QM electron density to reduce the computational cost without loss of accuracy. Testing on model water/water systems, we verified that the CFOUR interface to MiMiC is robust, guaranteeing fast convergence of the self-consistent field cycles and optimal conservation of the energy during the integration of the equations of motion. Finally, we verified that the CFOUR interface to MiMiC is compatible with the use of a QM/QM multiple time-step algorithm, which effectively reduces the cost of ab initio MD (AIMD) or QM/MM-MD simulations using higher level wavefunction-based approaches compared to cheaper density functional theory-based ones. The new wavefunction-based AIMD and QM/MM-MD implementations were tested and validated for a large number of wavefunction approaches, including Hartree-Fock and post-Hartree-Fock methods like Møller-Plesset, coupled-cluster, and complete active space self-consistent field.

Wavefunction-Based Electrostatic-Embedding QM/MM Using CFOUR through MiMiC

Meloni S.
Writing – Review & Editing
;
2022

Abstract

We present an interface of the wavefunction-based quantum chemical software CFOUR to the multiscale modeling framework MiMiC. Electrostatic embedding of the quantum mechanical (QM) part is achieved by analytic evaluation of one-electron integrals in CFOUR, while the rest of the QM/molecular mechanical (MM) operations are treated according to the previous MiMiC-based QM/MM implementation. Long-range electrostatic interactions are treated by a multipole expansion of the potential from the QM electron density to reduce the computational cost without loss of accuracy. Testing on model water/water systems, we verified that the CFOUR interface to MiMiC is robust, guaranteeing fast convergence of the self-consistent field cycles and optimal conservation of the energy during the integration of the equations of motion. Finally, we verified that the CFOUR interface to MiMiC is compatible with the use of a QM/QM multiple time-step algorithm, which effectively reduces the cost of ab initio MD (AIMD) or QM/MM-MD simulations using higher level wavefunction-based approaches compared to cheaper density functional theory-based ones. The new wavefunction-based AIMD and QM/MM-MD implementations were tested and validated for a large number of wavefunction approaches, including Hartree-Fock and post-Hartree-Fock methods like Møller-Plesset, coupled-cluster, and complete active space self-consistent field.
2022
Kirsch, T.; Olsen, J. M. H.; Bolnykh, V.; Meloni, S.; Ippoliti, E.; Rothlisberger, U.; Cascella, M.; Gauss, J.
File in questo prodotto:
File Dimensione Formato  
acs.jctc.1c00878.pdf

solo gestori archivio

Descrizione: Full text editoriale
Tipologia: Full text (versione editoriale)
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 2.49 MB
Formato Adobe PDF
2.49 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
2108.10707.pdf

accesso aperto

Descrizione: Pre-print
Tipologia: Pre-print
Licenza: Creative commons
Dimensione 7.32 MB
Formato Adobe PDF
7.32 MB Adobe PDF Visualizza/Apri

I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/2486025
Citazioni
  • ???jsp.display-item.citation.pmc??? 2
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 3
social impact