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Abstract

We present an interface of the wavefunction-based quantum-chemical software CFOUR

to the multiscale modeling framework MiMiC. Electrostatic embedding of the quantum-

mechanical (QM) part is achieved by analytic evaluation of one-electron integrals in

CFOUR, while the rest of the QM/MM operations are treated according to the pre-

vious MiMiC-based QM/MM implementation. Long-range electrostatic interactions

are treated by a multipole expansion of the potential from the QM electron density to

reduce the computational cost without loss of accuracy. Testing on model water/water

systems, we verified that the CFOUR interface to MiMiC is robust, guaranteeing fast

convergence of the SCF cycles and optimal conservation of the energy during the in-

tegration of the equations of motion. Finally, we verified that the CFOUR inter-

face to MiMiC is compatible with the use of a QM/QM multiple time-step algorithm,

which effectively reduces the cost of AIMD or QM/MM-MD simulations using higher

level wavefunction-based approaches compared to cheaper density-functional theory-

based ones. The new wavefunction-based AIMD and QM/MM-MD implementation

was tested and validated for a large number of wavefunction approaches, including

Hartree-Fock and post-Hartree-Fock methods like Møller-Plesset, coupled cluster, and

complete active space self-consistent field.
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1 Introduction

Multiscale modeling techniques that involve quantum-chemical methods1 are important tools

widely used in many areas such as solution chemistry, catalysis, or enzymology.2–6 Among

them, hybrid quantum mechanics/molecular mechanics (QM/MM) approaches are especially

important in reactive biochemical systems where the explicit treatment of the electronic

structure as well as the handling of the environment, including several tens to hundreds of

thousands of atoms, is mandatory.7–10 Regardless of the progress in linear scaling11 and par-

allelization of electronic-structure methods,12 a fully quantum-mechanical (QM) treatment

for such intrinsically large systems is not possible. Fortunately, a proper description of the

electronic structure by quantum-chemical methods is only required for smaller regions of

the system where, e.g., chemical processes take place. In turn, all the other parts of the

system can be described effectively by some simplified approach, typically at the molecular-

mechanical (MM) level by a classical force-field.13–15

In additive QM/MM approaches4 the Hamiltonian of the whole system is split into three

parts:

Ĥtot = ĤQM + ĤMM + ĤQM/MM. (1)

While ĤQM and ĤMM are the Hamiltonians of the QM and MM subsystem, the crucial part of

any QM/MM implementation is a proper description of the coupling Hamiltonian ĤQM/MM

of the two subsystems. The QM/MM coupling is usually done at one of three levels of

complexity.3,4 The simplest one is mechanical embedding,16 where the QM/MM interactions

are described at the MM level and therefore the electron density of the QM subsystem is

not polarised by the MM subsystem. The use of pure QM and MM calculations makes this

approach computationally advantageous, but prone to errors whenever the electron density

of the QM subsystem is strongly polarised by the MM subsystem. The most popular coupling

approach today is electrostatic embedding16 where the point charges of the MM subsystem

are included in the one-electron Hamiltonian of the QM subsystem. This leads to a direct
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polarisation of the QM subsystem and usually a reasonable accuracy of its description. If

electrostatic embedding is not enough to describe the coupling between the QM and MM

subsystems, the final step is to use a polarised embedding16 approach, where the QM part is

coupled to a polarisable force field, or to use hierarchical QM/QM layering.

The choice of QM method to be used used in a QM/MM simulation depends on the

compromise between the accuracy needed for a given problem/system3 and the computa-

tional resources available. Currently, methods based on density-functional theory17,18 (DFT)

are the most common choice, because of their favourable cost/accuracy ratio.3,4,19 Never-

theless, for some specific applications (e.g., involving photo-excited electronic states), the

use of more accurate post-Hartree–Fock1 methods, such as Møller–Plesset perturbation the-

ory,20 coupled-cluster theory,21 or multiconfigurational methods, like complete active space

self-consistent field (CAS-SCF),22,23 is preferable.24,25

Having access to software offering a wide range of QM methods and different MM force

fields would guarantee maximal flexibility in the choice of the most accurate and suitable

QM/MM approach, as well as the possibility of consistent benchmarking for the least ex-

pensive approaches. To date, there exist a number of packages that are optimised toward

specific QM or MM methods. Therefore, universal, flexible QM/MM could be more effec-

tively achieved by coupling those specialised software than by rewriting a monolithic package

dealing with all possible QM and MM implementations. MiMiC26,27 is a recently developed

framework for multiscale modeling in computational chemistry showcasing the wanted flex-

ibility for easy yet efficient interfacing among different programs, with only small adaptions

in the individual codes. So far MiMiC offers a coupling between the plane-wave DFT28

program CPMD29 and the widely used classical molecular dynamics (MD) program GRO-

MACS.30,31 In that implementation, MiMiC uses CPMD as the main driver for the MD and

for the description of the QM subsystem.

In this work, we present a wavefunction-based QM/MM implementation by coupling the

CFOUR program package32 to the MiMiC framework. This allows the use of Hartree–Fock
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(HF), post-HF methods, like second-order Møller–Plesset (MP2) and truncated coupled-

cluster methods (e.g., CCSD and CCSD(T)), and multiconfigurational methods within both

ab-initio MD (AIMD) and electrostatic-embedding QM/MM-MD. The use of CPMD as the

main MD driver also offers access to a multiple time step (MTS) algorithm33 in which we

can directly combine DFT with wavefunction-based methods. The MTS algorithm together

with a long-range electrostatic coupling scheme34 reduces the computational cost and makes

QM/MM-MD simulations with high-accuracy QM methods feasible.

The paper is organized as follows. In section 2 the implementation of the electrostatic

interactions between the QM and MM subsystems in the quantum-chemical package CFOUR

is described, before we discuss the coupling of CFOUR within the MiMiC framework. In

section 2.3 we outline the computational details of the test systems and the benchmark

simulations. The results of these simulations are shown in section 3.1 where we demonstrate

the computational stability and functionality of our implementation.

2 Methods

2.1 QM/MM coupling Hamiltonian

In the present QM/MM implementation, we use a full Hamiltonian electrostatic-coupling

scheme, following ref. 34. The interaction Hamiltonian ĤQM/MM is split into a bonded and

a nonbonded part:

ĤQM/MM = Ĥbonded + Ĥnonbonded. (2)

The bonded part Ĥbonded is only nonzero if the QM/MM boundary cuts through covalent

bonds, and treated at the molecular mechanics level. In this case the QM atoms at the

boundary are replaced by monovalent pseudopotentials.3,26,35 The non-bonded interactions

consist of van der Waals interactions, which are described by the classical force field, and elec-

trostatic interactions. For the latter, we adapted and implemented the electronic-coupling
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scheme developed by Laio et al.34 in CFOUR. Because of the cost of the explicit treatment of

electrostatic interactions, the MM atoms are divided into short- and long-range terms. The

short-range contribution takes into account the explicit interactions between the nuclei and

electrons of the QM subsystem and the point charges of the MM subsystem. In contrast,

the interactions between the MM atoms belonging to the long-range region and the QM

subsystem are calculated through a multipole expansion of the electrostatic potential from

the QM electrons. This is possible because of the local character of the QM electron density

and the distance to the long-range MM atoms:34

Ĥel
QM/MM = Ĥsr + Ĥlr. (3)

The short- and long-range regions are determined by a cut-off radius from the central QM

part dividing the MM atoms into either region. This leads to the following short-range

interaction Hamiltonian:

Ĥsr =−
n∑
i

Msr∑
A

qA
|RA−ri|

+
N∑
I

Msr∑
A

qAZI
|RA−RI |

(4)

where the sums run over all short-range MM atoms Msr, all electrons n, and all nuclei of the

N QM atoms. Thus, qA and RA are the point charge and coordinate of an MM atom, ri is

an electron coordinate, and ZI is the charge of a nucleus. This leads to an external potential

that is included in the optimization of the wavefunction of the QM subsystem.

The forces on an MM atom and a QM nucleus due to the interactions between MM point

charges and QM nuclei are given by the negative derivative of the second term in eq. 4 with

respect to the MM and QM coordinates, respectively:

F IA(A) =
N∑
I

qAZI
|RA−RI |3

(RA−RI) (5)
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and

F IA(I) =−
Msr∑
A

qAZI
|RA−RI |3

(RA−RI). (6)

The force on an MM atom due to its interaction with the QM electrons is given by the

expectation value of the negative derivative of the first term in eq. 4 with respect to the

MM coordinates:

F iA(A) =
∑
µν
Dµν

〈
χµ

∣∣∣∣∣ qA
|RA−r|3

(RA−r)
∣∣∣∣∣χν

〉
(7)

with the density matrix elements Dµν and basis functions χµ and χν . The corresponding

force on a QM nucleus is given by

F iA(I) =
Msr∑
A

∑
µν
Dµν

[〈
δχµ
δRI

∣∣∣∣∣ qA
|RA−r|

∣∣∣∣∣χν
〉

+
〈
χµ

∣∣∣∣∣ qA
|RA−r|

∣∣∣∣∣ δχνδRI

〉]
. (8)

There are also implicit forces on the QM atoms due to the polarisation of the QM subsystem

by the MM point charges and the consequent changes in the molecular orbitals.

In our implementation of the long-range interactions, we truncate the multipole expansion

after the fourth order and only expand the electronic part of the electrostatic interactions.

The interactions between QM nuclei and MM atoms in the long-range region are still calcu-

lated explicitly (compare eq. 5 and 6). The multipole expansion (with the origin at zero) is

given by

∑
i

∑
A

qA
|RA−ri|

=
∑
A

qA

C 1
|RA|

+
∑
α
µα

RαA
|RA|3

+ 1
2
∑
α,β

ΘαβR
α
AR

β
A

|RA|5

+ 1
6
∑
α,β,γ

ΩαβγR
α
AR

β
AR

γ
A

|RA|7
+ 1

24
∑

α,β,γ,ε

ΦαβγεR
α
AR

β
AR

γ
AR

ε
A

|RA|9

 (9)

with charge C, dipole moment µα, quadrupole moment Θαβ, octopole moment Ωαβγ , and

hexadecapole moment Φαβγε of the QM electron density. Here α, β, etc. denote Cartesian

components. Because of the use of atom-centered Gaussian-type orbital (GTO) basis func-

tions in the QM part, we express the multipoles in an integral form. For the charge and the
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dipole moment the expressions have the following form:

C =
∑
µ,ν
Dµν〈χµ|χν〉 and µα =

∑
µ,ν
Dµν〈χµ|α|χν〉. (10)

The forces on the MM atoms and QM nuclei are calculated by differentiation of eq. (9)

with respect to the coordinates of the long-range MM atoms RA and with respect to the

coordinates of the QM nuclei RI at which the basis functions are centered. The expressions

for the derivatives are given in the appendix together with the explicit form of the quadrupole

moment Θαβ, the octopole moment Ωαβγ , and the hexadecapole moment Ψαβγε.

The calculation of the long-range energy contribution and forces is computationally much

cheaper than the explicit calculation for the short-range region. This is the case, because

the calculation of the multipoles (and their derivatives) is decoupled from the sum over

MM point charges whereas for the short-range region a one-electron integral must be cal-

culated individually for every MM atom (see eq. 4 and 7). The resulting reduction in the

computational cost is shown in section 3.2.1.

2.2 Interface to the MiMiC framework

The CFOUR quantum-chemistry package was interfaced to the AIMD program CPMD and

the classical MD package GROMACS through the MiMiC framework.26,27 The MiMiC com-

munication library is responsible for the exchange of all relevant information, like sending

coordinates and charges of the MM atoms to CFOUR, and returning the calculated energy

and forces necessary for each MD step via a message passing interface (MPI). The workflow

of our QM/MM implementation is shown in figure (1). In this implementation CPMD is

the MD driver, GROMACS calculates the MM and van der Waals QM/MM energy and

forces, and CFOUR calculates the QM energy and forces. In contrast to the MiMiC-based

QM/MM implementation in ref. 26, where the electrostatic QM/MM interactions are cal-

culated by MiMiC (transparent yellow box in figure 1), in the present implementation these
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contributions are calculated by CFOUR. This is done because of the integral form of these

terms, which numerically strongly depends on the functional form of basis functions used in

the QM region. All three programs run independently on their own compute nodes while

MiMiC manages the communication and data exchange between the programs.

Gromacs CPMD MiMiC CFOUR

Initialisation Collect DataInitialisation Initialisation

Receive
Coordinates

Distribute
Coordinates

Send
Coordinates

Receive
Coordinates

Calc. MM-Forces
Calc.

QM/MM Forces
Calc. QM- and
QM/MM-Forces

Send MM Forces Receive Forces Collect Forces Send Forces

Update
Coordinates

MD Loop

Figure 1: Scheme of the QM/MM-MD workflow using CFOUR (QM), GROMACS (MM)
and CPMD (MD driver) via the MiMiC framework.
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2.3 Computational Details

To verify the QM/MM implementation, we used a small system consisting of one QM water

molecule solvated by 1011 MM water molecules and a larger one consisting of one QM

water molecule solvated by 12000 MM water molecules. The small and large systems are

used for the analysis and validation of the short- and long-range coupling, respectively. All

simulations were performed using the MiMiC framework coupling locally modified versions

of GROMACS (version 2018) and CPMD (version 4.3), and a modified developer version

of CFOUR. We also performed AIMD simulations on a single water molecule in vacuum

that are used to compare with the solvated systems. For these AIMD simulations of water

in vacuum, the starting geometries were obtained by a geometry optimization at the same

level as the one used in the simulations, i.e., either HF, MP2, CCSD(T), or CAS-SCF(6,6)

together with the cc-pVTZ36 basis set. In our case CAS-SCF(6,6) means an active space of

6 orbitals filled with 6 electrons for the CI calculation.

The liquid water systems for QM/MM-MD simulations were built and preequilibrated by

classical MM-MD simulations. We filled boxes of 3.1643 and 7.1843 nm with 1012 and 12001

water molecules, respectively. The structures were minimized with a steepest-descent scheme

until the maximum force was lower than 1000 kJ · (mol · nm)−1. After the minimization, a

100 ps (2 fs time step) simulation was run in the NVT ensemble. The initial velocities were

assigned from a Maxwell distribution at a temperature of 300 K that was maintained by a

modified Berendsen thermostat37 using one coupling group and a time constant of 0.1 ps.

After that, we ran a 100 ps (2 fs time step) simulation in the NPT ensemble at 1.0 bar using

a Parrinello–Rahman38 barostat with a time constant of 2 ps. The temperature was again

controlled by a modified Berendsen thermostat at 300 K. Finally, we performed a 1 ns (2 fs

time step) simulation run in the NVT ensemble, again at 300 K and with the same parameters

as before. For all the preequilibration steps, we used periodic boundary conditions, a cutoff

of 1.0 nm for the short-range electrostatic and van der Waals interactions using the Verlet39

scheme and all bonds involving H-atoms were constrained using the LINCS algorithm40 and

10



the rigidity of the water molecules is ensured by the SETTLE algorithm.41 The long-range

electrostatic interactions were calculated using the particle-mesh Ewald42 (PME) method.

As integrator, we used the leap-frog scheme.43 In this way, we obtained equilibrated liquid

water systems with 1012 water molecules in a cubic box with dimensions of 3.116 nm for

the extended simple point charge (SPC/E)44 water model and one with dimensions of 3.129

nm for the three points (TIP3P)45 water model, as well as a large liquid water system with

12001 SPC/E water molecules in a cubic box with dimensions of 7.119 nm.

The Born–Oppenheimer approach was used for all AIMD and QM/MM-MD simula-

tions.28 The simulation times were approximately 12.1 ps (50000 time steps of 10 a.u.). The

AIMD simulations were initialized to a temperature of 1 K and the QM/MM-MD simula-

tions on liquid water were initialized to a temperature of 300 K and none of the systems

were coupled to a thermostat (NVE ensemble).

The MM subsystem was described by the TIP3P and the SPC/E water models. As in

the preequilibration, periodic boundary conditions were applied for the MM subsystem, a

cutoff of 1.5 nm was used for the short-range electrostatic, and van der Waals interactions

together with a PME scheme for the long-range electrostatic interactions.

The QM subsystem was described by either plane-wave (PW) based DFT (PW-DFT) or

a wavefunction-based method. In case of PW-DFT, we used the BLYP exchange–correlation

functional46,47 with Troullier–Martins norm-conserving pseudopotentials.48 We used isolated

system conditions for the QM subsystem and the Tuckerman & Martyna49 scheme to solve

Poisson’s equation. The cell size was 30 a.u. and we used a PW cutoff of 100 Ry. For the

SCF optimization, a convergence criterion of 10−5 a.u. for the gradient of the orbitals was

used. In case of wavefunction-based methods, the correlation consistent cc-pVTZ basis36

was used in all cases. The SCF convergence criterion was 10−9 a.u. for the density matrix

and, in case of the CCSD(T) calculations, convergence criteria of 10−7 a.u. were used for the

CC- and lambda equations.

All electrostatic QM/MM interactions on the system with 1012 water molecules were
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computed without periodic conditions using the short-range coupling for the entire system.

For the system with 12001 water molecules, both short- and long-range electrostatic inter-

actions were used with different cutoff distances. The dipole moment of the QM system was

calculated on the fly at every step of the simulations. For the analysis of the systems and

evaluation of properties, the last 30000 steps of the simulations were used.
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3 Results

3.1 Validation

3.1.1 Energy conservation

Conservation of the energy during a simulation is an important indicator of a stable AIMD

or QM/MM-MD implementation and guarantees that the interface is suitable to sample a

thermodynamic ensemble. Therefore, we investigated the profile of the energy as well as

the deviation from the average energy per particle during a NVE simulation of one water

molecule in the gas phase. The results for the AIMD simulations using HF, MP2, CCSD(T),

and CAS-SCF(6,6) are shown in the top part of figure (2). The energy deviation is calculated

by ∆E(t) =E(t)−〈E〉. For all QM methods, the energy fluctuation is very small and there

is no visible drift in the energy. For CAS-SCF(6,6) comparatively larger fluctuations for

the single water molecule are observed, but with a standard deviation of 2.4 ·10−8 a.u. they

anyway remain within negligible values.

We also examined the energy fluctuation for the QM/MM-MD simulations using HF,

MP2, CCSD(T), and CAS-SCF(6,6) for the QM water molecule solvated by 1011 classical

SPC/E water molecules. The results are shown in the bottom part of figure (2). Also in

this case, the energy fluctuations are very small and no significant drift in the energy is seen.

The standard deviation of the energy per particle is 3.7 ·10−5 a.u. for HF, 4.0 ·10−5 a.u. for

MP2, 4.9 ·10−5 a.u. for CCSD(T), and 2.7 ·10−5 a.u. for CAS-SCF(6,6). These results show

that our AIMD and QM/MM-MD implementation enables stable simulations using various

wavefunction-based QM methods.

3.1.2 Polarisation of the QM region

An important aspect in QM/MM approaches is the description of the effect of the MM

environment on the structure and polarisation of the QM part.50 To test that, we investigated

two properties as indicators of the quality of the QM/MM coupling, namely, the dipole
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Figure 2: Total energy of a single water molecule (top part) and of the QM/MM system with
1012 water molecules (bottom part) simulated within the NVE ensemble using HF, MP2,
CCSD(T), and CAS-SCF(6,6) with the cc-pVTZ basis to model the QM water molecule and
SPC/E for all MM water molecules. The insets show the fluctuation of the total energy per
atom for the respective system.

moment of one QM water molecule surrounded by 1011 SPC/E water molecules, and its

radial distribution function51 (RDF).

In contrast to classical MM-MD simulations, QM/MM-MD (and AIMD) simulations

give detailed information about the electronic structure of the solute. Thus we can analyse

bonding and electronic properties such as the dipole moment.

It is well known that the polarisation of the electronic structure of a water molecule

in liquid water leads to an increase of the dipole moment compared to the gas phase.53–57

To get a reference for the dipole moment of an unpolarised water molecule, we performed

AIMD simulations of a single water molecule as well as single-point calculations on the

geometry-optimized structure. For a polarised water molecule, we calculated the average
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Table 1: Dipole Moment of a QM Water Moleculea

method HF MP2 CCSD(T) CAS(6,6) BLYP exp.

single-point 1.988 1.936 1.916 1.935 1.814 1.847 ± 0.001 52

AIMD (in vacuo) 1.988 ± 0.004 1.936 ± 0.004 1.916 ± 0.004 1.909 ± 0.031 1.846 ± 0.005
QM/MM (SPC/E) 2.694 ± 0.160 2.742 ± 0.145 2.765 ± 0.166 2.624 ± 0.177 2.720 ± 0.169 2.9 ± 0.6 53

QM/MM (TIP3P) 2.732 ± 0.146 2.692 ± 0.166 2.632 ± 0.168 2.755 ± 0.157 2.699 ± 0.200

a The dipole moment (in Debye) is obtained from single-point QM calculations as well as AIMD (at 1 K) and QM/MM-MD
simulations (at 300 K) using the cc-pVTZ basis for the wavefunction-based QM methods. Standard deviations are given for
the dipoles obtained from MD simulations.

dipole moment of the QM water molecule from the QM/MM-MD trajectories of the small

liquid water system. The results are shown in table (1). The single-point and average

dipole moments of gaseous water are the same (minor deviation for CAS-SCF and DFT), as

expected, and it is again a good indication that the AIMD implementation works well. All

gas-phase values agree well with the experimental value, within the approximation associated

to their respective level of theory.

The dipole moment of a water molecule in the liquid phase obtained from the QM/MM-

MD simulations are, for every QM method, much larger than the gas-phase dipole moment.

This is mainly a result of the polarisation of the electronic structure due to the environment.

The dipole moments of the two SPC/E and TIP3P classical water models are only slightly

different (2.351 D for SPC/E44 and 2.344 D for TIP3P45), and produce a similar polarisation

of the QM water (Table 1). For both classical models, the standard deviation of the dipole

moment of the QM water is quite large. The significant shift in the average value of the

water dipole from gas to liquid phase, and the large fluctuations of the dipole moment during

the simulation indicate that our implementation correctly captures the very strong coupling

between the electronic density and the surrounding mobile classical charges. The obtained

values are somewhat smaller than the experimental value but still well within the uncertainty

and also match well with other theoretical studies of the dipole moment of liquid water.53–57

Since our QM/MM implementation only considers the polarisation of the QM subsystem

due to the MM subsystem using water models with fixed dipole moments that are in general

smaller than the experimental values, it is plausible to find that also the dipole moment of the
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QM water is smaller than the experimental one. In general, quantitatively better results for

liquid water require that mutual polarisation and other effects between the central and the

surrounding waters are taken into account. These include (among others) charge transfer and

better descriptions of Pauli repulsion and dispersion. Therefore, either larger QM regions

or a more advanced water model would be needed, for example polarisable variants like

the MB-pol58 force-field, which is constructed including many-body terms calculated at the

CCSD(T)/CBS level of theory.

Figure 3: Oxygen–oxygen radial distribution function (RDF) between the QM and MM
oxygen atoms at 300 K from QM/MM-MD simulations within the NVE ensemble using the
SPC/E water model and from a pure MM-MD simulation with the SPC/E water model.
The cc-pVTZ basis was used for the wavefunction-based QM methods.

The structure of the QM water and its solvation shell was monitored by calculation of

the RDF between the QM and MM oxygens. The results for the different QM methods and

for a pure SPC/E MM-MD simulation are shown in figure (3). For all QM methods, the

distances of the first maximum is in very good agreement and for the second maximum still
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in good agreement with the experimental values51,53 (see table (2)). The overall shape of

the RDF looks as expected, apart for some noisy features due to relatively poor sampling.

This agreement shows that the environment of the QM water molecule and especially the

hydrogen-bonded neighbours are described well with our QM/MM implementation. Com-

pared to the pure SPC/E model, the QM water appears to rigidify the local structure of

its first neighbours, with a higher first peak, and a lower first minimum, regardless of the

QM level of theory, in agreement with what has been observed in past studies on QM water

models.59–61

Table 2: First and Second Peak of the Oxygen–Oxygen RDFa

maxima HF MP2 CCSD(T) CAS(6,6) BLYP SPC/E exp.51

1. rOO 2.82 2.80 2.81 2.80 2.81 2.89 2.8
2. rOO 4.55 4.80 4.75 4.24 4.54 4.61 4.5

a The distances (in Å) for the first and second peak of the oxygen–oxygen
radial distribution functions (RDFs) between the QM and MM oxygen
atoms at 300 K are obtained from QM/MM-MD simulations within the
NVE ensemble using the SPC/E water model. The cc-pVTZ basis was
used for the wavefunction-based QM methods.

3.1.3 Vibrational frequencies

To test the quality and reliability of the dynamical properties obtained by our implemen-

tation, we calculated vibrational frequencies from MD trajectories,56,62–68 obtaining them

from the Fourier transform of the dipole-moment autocorrelation function.62–65

Figure (4a) reports the IR spectrum of gaseous and liquid water using the same trajec-

tories as in section 3.1.2. For the gaseous water molecule, we also calculated single-point

harmonic vibrational frequencies at the CCSD(T)/cc-pVTZ level to compare to the AIMD

results and to experiment, shown in figure (4b). The frequencies derived from AIMD sim-

ulations agree well with the frequencies obtained from the single-point calculation and also

with the harmonic experimental values. Because AIMD simulations ran at very low tem-

perature (1 K) we expected negligible temperature effects and no appearance of anharmonic
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(a)

Mode SP AIMD QM/MM exp. gas
(harm.)69

exp. gas
(fund.)70

exp. liquid
(fund.)71

bend 1667.3 1667.6 1772.0 1648 1595 1640
asym. stretch 3858.3 3863.1 3477.5 3832 3657 3450
sym. stretch 3964.0 3969.1 3643.2 3943 3756 3615

(b)

Figure 4: IR spectra (a) and frequencies (b) of gaseous and liquid water obtained from single-
point (SP) calculations as well as AIMD (at 1 K) and QM/MM-MD simulations (at 300 K
within the NVE ensemble. The CCSD(T)/cc-pVTZ level of theory was used throughout and
the SPC/E water model was used for QM/MM. Experimental harmonic and fundamental
frequencies are included for comparison. Frequencies are given in cm−1.

deviations. For the solvated water system dynamical environment effects are essential for the

position and the shape of the IR peaks. The IR spectrum obtained from the QM/MM-MD

simulation has the typical broad band around 3500−3700 cm−1 that is caused by hydrogen-

bond interactions interfering with the stretching modes. The obtained frequencies for the

two stretching modes (3477.5 cm−1 and 3643.2 cm−1) are in a reasonable agreement with

the experimental values (3450 cm−1 and 3615 cm−1). The position of the bending mode
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(1772.0 cm−1) is at a higher frequency than the experimental value (1640 cm−1). The com-

paratively large blue shift of the bending mode indicates the relatively strong influence of

the water model. The solvent induced blue shift of the bending mode and the red shift of the

stretching modes are qualitatively well reproduced which is another indication of a correct

implementation of the QM/MM interface.

3.2 Speeding up simulations

The use of highly accurate quantum-chemical methods in MD simulations is computationally

very expensive. Therefore it is important to find ways to reduce the cost and to increase the

efficiency of the implementation. Here we present two methods implemented in the CFOUR

interface to MiMiC to speed-up simulations.

3.2.1 Long-range interactions

Hierarchical treatment of the long-range electrostatic coupling is an excellent strategy to

reduce the time per MD step in the simulation.34 In the present implementation, the long-

range electrostatic interactions are implemented in the CFOUR code, because of the integral

form of the multipoles and their derivatives and the use of atom-centered GTO basis functions

in the QM part. To investigate the effectiveness of the new implementation in reducing the

computational cost, as well as the dependence of the numerical accuracy on the number of

MM atoms in the short-range region, we performed single-point QM/MM calculations and

QM/MM-MD simulations of one QM water molecule surrounded by 12000 SPC/E water

molecules, which is a typical system size in studies of enzymatic reactions, using different

cutoff distances dcut. The accuracy of the QM and QM/MM energy and forces as well

as the dipole moment of the QM subsystem is tested by single-point calculations. The

MD simulations show the stability of the long-range implementation and of the obtained

properties. We compared the obtained values with calculations where all MM atoms are in

the short-range region.

19



Figure 5: Convergence of the a) energy, b) forces, and c) dipole moment, and the d) absolute
time with respect to the number of MM atoms in the short-range region for the calculation of
the short- and long-range electrostatic QM/MM interactions in a single-point HF/cc-pVTZ
calculation on one snapshot of a water system with 12001 water molecules. The reference is
a calculation with all MM atoms in the short-range region. The energy in a) is the full QM
energy plus the electrostatic QM/MM interaction energy. In b) the mean absolute error of
the AIMD and electrostatic QM/MM forces on four different groups of atoms is shown (the
three QM atoms, the three short-range MM atoms nearest the center of mass of the QM
subsystem, the three nearest long-range MM atoms, and the three farthest long-range MM
atoms). Plot c) shows the dipole moment of the QM subsystem and d) shows the relative
time for the calculation of the QM/MM interactions (energy and forces).

Figure (5) shows the results of the single-point calculations. The convergence criterion

for the density matrix in the solution of the HF equations for the single-point calculations

was 10−12 a.u. which is much tighter than what we usually use in QM/MM-MD simulations

(10−7 - 10−9 a.u.). It is seen that the errors are small for all numbers of MM atoms in the
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short-range region except of very low numbers (less than 5-10 % short-range atoms). We

achieve an accuracy of about 10−9 a.u. for the energy by including only 10 % of the MM

atoms in the short-range region. This error is negligible compared to the fluctuations of the

energy because of the time discretization error and thermal energy fluctuations at 300 K

(compare 3.1.1). Including more atoms in the short-range region improves the energy only

slightly. The full convergence to the short-range value is only achieved if nearly all atoms are

included. This behaviour is also seen for the forces on the different groups of atoms, except

for the three long-range atoms that are furthest from the QM subsystem, where the force

is already exact even for very few short-range atoms. For the dipole moment the accuracy

is about 10−8 D with 10 % short-range atoms. This accuracy is sufficient for QM/MM-MD

simulations where we usually use convergence criteria of similar magnitude. Thus, the num-

ber of MM atoms in the short-range region that are needed to guarantee stable simulations

with the same accuracy as pure short-range simulations is about 10 % for this system (3600

atoms). Nevertheless, this number can be different for other systems, e.g., with a larger or

differently shaped QM subsystem, and should therefore be checked before performing a simu-

lation. Figure (5d) shows the reduction in computational cost for the electrostatic QM/MM

interactions. As expected, the time for the short-range interactions increases linearly with

the number of MM atoms in the short-range region. The time for the calculation of the long-

range interactions is negligible in comparison to the time spent calculating the short-range

interactions and increases only slightly with increasing number of long-range MM atoms.

For example, the calculation of the short-range QM/MM interactions with all MM atoms in

the short-range region took 102 seconds. The calculation of the QM/MM interactions with

only 4000 atoms (11 %) short-range MM atoms took 9 seconds, thereof only 0.3 seconds were

needed for the calculation of the long-range QM/MM interactions. Therefore, as expected,

also in the present implementation the use of long-range interactions drastically reduces the

computational cost without any significant loss of accuracy.

The fluctuation of the energy during a QM/MM-MD simulation with different cutoff
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Figure 6: Fluctuation of the energy per particle for different cutoff distances for the long-
range coupling. The system consisting of 12001 water molecules was simulated within the
NVE ensemble at the HF/cc-pVTZ level of theory and using the SPC/E water model.

distances is shown in figure (6). There is a drift of the energy for the 5 a.u. cutoff distance.

No drift is observed for all other cutoff distances and the fluctuations are very small and

of the same magnitude as for the full short-range coupling case. The standard deviation of

the fluctuations of the energy per particle is between 3.0 · 10−4 and 7.0 · 10−5 a.u. for the

different cutoff distances (excluding the 5 a.u. cutoff). This shows that a cutoff distance of

7.5 a.u. (which is only 35-50 MM atoms in the short-range region) is enough for a stable

simulation. However, this would affect the accuracy compared to a full short-range treatment

as discussed earlier. For comparison, a cutoff distance of 35− 40 a.u. corresponds to 10 %

MM atoms in the short-range region.

Table (3) shows the average dipole moment and associated standard deviation for different

cutoff distances. The dipole moments are all in the same range and within the standard

deviation of the full short-range coupling case. They should converge to the same value

when simulating long enough considering the precision given in the table and the accuracy

that can be obtained (see figure (5c)). This shows that even small cutoff distance like 10 a.u.,

where only 60-90 MM atoms are in the short-range region, can be sufficient to adequately

describe the polarisation of the electronic structure of the QM region.
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Table 3: Dipole Moment of the QM Water Moleculea

dcut 5 7.5 10 20 30 40 50 80 only sr
µ 2.811 2.639 2.753 2.637 2.748 2.692 2.706 2.719 2.711
σ 0.147 0.150 0.150 0.144 0.181 0.185 0.154 0.171 0.178

a The average dipole moment and associated standard deviation (in D) of the
QM water molecule in the system with 12001 water molecules is obtained
from a QM/MM-MD simulation at the HF/cc-pVTZ level of theory and
using the SPC/E water model. The values are obtained for different cutoff
distances for the long-range coupling and compared with the full short-range
case.

3.2.2 QM/QM multiple time step dynamics

Another method to speed-up the simulation is the use of an MTS algorithm.33,49,72 This

reduces the number of calculations needed at the high-accuracy quantum-chemical level. Be-

cause the maximum time step δt used in the integration of the equation of motion is limited,

MTS algorithms separate different degrees of freedom which can be integrated at different

rates. The MTS algorithm implemented in CPMD33 is an adaptation of the rRESPA73

scheme and enables the use of a combination of quantum-chemical methods within a simu-

lation. Here we explore the combination of BLYP and CCSD(T). Instead of using CCSD(T)

in every step of the simulation, we use BLYP as the reference method, while CCSD(T) is

used only at larger time steps as a correction.

We performed AIMD simulations on hydrogen fluoride, which has only one vibrational

mode so that no other effects can interfere, to investigate the use of the MTS scheme within

our implementation. To obtain reference data, we first performed simulations with a standard

time step of 10 a.u. (≈ 0.2 fs) at the CCSD(T)/cc-pVTZ or BLYP/PW levels of theory. Then,

we performed simulations at the BLYP/PW level of theory with the use of CCSD(T)/cc-

pVTZ calculations every nth time step (the MTS factor n being 2,4,6,10,15, or 20) as well

as a simulation at the CCSD(T)/cc-pVTZ level of theory with a time step of 50 a.u. (≈ 1.2

fs) to demonstrate that a CC simulation with an increased time step without any reference

forces at lower level does not reproduce the correct value. The obtained spectra are given in
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Figure 7: Vibrational spectra of hydrogen fluoride in vacuum obtained from AIMD
simulations at the combined CCSD(T)/cc-pVTZ and BLYP/PW levels of theory with
CCSD(T)/cc-pVTZ calculations only every nth step where n = 2,4,6,10,15, or 20. Fre-
quencies are given in cm−1.

figure (7) and the energy fluctuations for the MTS simulations are given in the appendix.

The frequency obtained from BLYP/PW and CCSD(T)/cc-pVTZ simulations using the

10 a.u. time step differ substantially as expected. All BLYP/CCSD(T) MTS-MD simulations,

except for the one with the largest MTS factor of 20, reasonably reproduce the pure CCSD(T)

frequency. The simulation with an MTS factor of 4 has a deviation of +6 cm−1 and the

simulation with the MTS factor of 10 has a deviation of −4 cm−1. The other simulations

have deviations smaller than ±1 cm−1. However, the simulation with the largest MTS factor

does not give reasonable results. Also the CCSD(T)/cc-pVTZ simulation with a time step of

50 a.u. does not reproduce the correct frequency because the time step is to large to describe

the vibrational mode of hydrogen fluoride. Remarkably, the BLYP/CCSD(T) MTS-MD
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simulation can reproduce the pure CCSD(T) frequency even though a CCSD(T) calculation

is only performed every 15th step (150 a.u. or ≈ 3.6 fs). All MTS-MD simulations reproduce

the coupled-cluster average bond length of HF of 0.916±0.002 Å. Even the simulation with

n= 20, with an average bond length of 0.9120±0.03 Å, reproduces reasonably well the CC

value.

Figure 8: Fluctuation of the bond length of hydrogen fluoride in vacuum obtained from
AIMD simulations at the combined CCSD(T)/cc-pVTZ and BLYP/PW levels of theory.

Figure (8) shows the fluctuation of the bond length of hydrogen fluoride. Panel a) shows

that in the MTS simulation a correction due to the CC calculations is introduced. These

corrections appear in the dynamics as fast oscillations along the CC trajectory with a period

corresponding to that of the correction rate. The oscillation of the correction and the physical

oscillation remain well separated until the MTS factors are small enough, but for an MTS

factor of n = 20 the interval for the corrections is too big to reproduce the CC trajectory.
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The vibration introduced by the correction steps can also be seen in the obtained vibrational

spectra. The MTS factor n = 2 corresponds to a very high correction frequency of 68900

cm−1. The correction frequency for the MTS factor of n= 20 is at 6890 cm−1 which is rather

close to the hydrogen fluoride vibration. The critical value for the MTS correction to well

reproduce the CCSD(T) vibrational frequency is n=15 (with a correction frequency of 9187

cm−1). Considering that one period of the hydrogen fluoride vibration takes around 33 time

steps, we deduce that the MTS factor should be at least smaller than half of the period of

the fastest vibrational mode that needs to be accurately reproduced. This is in agreement

with the literature describing limitations of the MTS procedure and possible solutions to the

resonance problem.33,74–76

Another limitation to the maximum speedup of the method described by Liberatore et

al.33 is the increased number of SCF cycles needed in the wavefunction optimization in the

correction steps for larger MTS factors. In our case this is negligible. The relative speedup

for the simulation with the MTS factor n= 20 is 19.78. This has two reasons: The number

of the SCF cycles increases only slightly from 9/10 cycles in the case of a pure CCSD(T)

simulation to 10/11 in the case of the simulation with MTS factor n = 20. Furthermore,

the time needed for the optimization of the wavefunction is negligible compared to the

time needed for solving the CC equations which is independent of the initial guess of the

wavefunction.

This means that a substantial speedup of the simulation can be achieved with little to no

loss in accuracy using MTS. However, the magnitude of the speedup can differ for bigger and

more complicated systems and according to the different properties for which a higher-level

correction is required.
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4 Summary and outlook

We presented a wavefunction-based electrostatic-embedding QM/MM implementation en-

abled by the coupling of the CFOUR program package to the MiMiC framework. This

allows the use of various QM methods like HF, MP2, CC, and CAS-SCF in AIMD and

QM/MM-MD simulations. The implementation features an efficient long-range electrostatic

coupling akin to the one in MiMiC but based on a GTO basis rather than a PW basis.

The interface in CFOUR is based on a loose-coupling scheme facilitated by the light-weight

MPI-based MiMiC communication library.

For AIMD and QM/MM-MD implementations using post-HF methods, the reduction of

the computational cost is very important. We presented two methods that drastically reduce

the computational cost without substantial loss of accuracy, namely a long-range coupling

scheme and the use of a QM/QM MTS algorithm.

To verify the functionality and stability of our implementation, we performed simulations

of gaseous water and a small and large liquid water system consisting of 1012 and 12001

water molecules, respectively, of which one molecule is treated by QM and the remainder by

MM. The large water system was used for the investigation of the long-range electrostatic

coupling. We showed that the energy fluctuations during an NVE simulation are very small

and that the energy is conserved over time for all tested QM methods. The quality of the

electrostatic coupling in QM/MM-MD simulations was investigated by comparison of RDFs,

dipole moments, and vibrational frequencies. We showed that all of the mentioned properties

agreed well with experimental data and with other theoretical studies.

With this coupling of CFOUR to MiMiC, we have an AIMD and QM/MM-MD imple-

mentation that is flexible in terms of the choice of QM method (e.g., DFT, MP2, CC, or

CAS-SCF), and that has several methods to increase the computational efficiency of the

simulations. The next step is to implement other quantum-chemical methods included in

CFOUR like EOM-CC and to use the flexibility of the MiMiC framework to couple QM/MM-

MD schemes with on-the-fly evaluation of molecular properties using a broad family of
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electronic-structure methods. Also, interfacing fast DFT-based AIMD codes to CFOUR,

naturally opens to the further development of hierarchical QM/QM embedding schemes

within MiMiC.

5 Appendix

5.1 Multipole expansion for basis functions

Here we give the explicit expressions for the multipoles used in eq. (9) and for the forces due

to the long-range interactions. The integral form of the charge C, the dipole moment µα, the

quadrupole moment Θαβ, the octopole moment Ωαβγ , and the hexadecapole moment Φαβγε

of an electron density are

C =
∑
µ,ν
Dµν〈χµ|χν〉, (11)

µα =
∑
µ,ν
Dµν〈χµ|α|χν〉, (12)

Θαβ =
∑
µ,ν
Dµν〈χµ|3αβ−|r|2δαβ|χν〉, (13)

Ωαβγ =
∑
µ,ν
Dµν〈χµ|15αβγ−3|r|2

(
γδαβ +βδαγ +αδβγ

)
|χν〉, (14)

and

Φαβγε =
∑
µ,ν
Dµν〈χµ|105αβγε+ 3|r|4

(
δαβδγε+ δαγδβε+ δαεδβγ

)
−15|r|2

(
αβδγε+αγδβε+βγδαε+αεδβγ +βεδαγ +γεδαβ

)
|χν〉.

(15)
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The forces on the atoms are calculated via the negative derivative of the electrostatic

potential ViA given in eq. (9) with respect to the coordinates of the long-range MM atoms

RA and with respect to the coordinates of the QM atoms RI at which the basis functions

are centered. The forces on the long-range MM atoms are given by

FαiA(A) =−δViA
δRαA

= qA

C RαA
|RA|3

−µα 1
|RA|3

+
∑
β

µβ
3RαAR

β
A

|RA|5

−
∑
β

Θαβ RβA
|RA|5

+
∑
β,γ

Θβγ 2.5RαAR
β
AR

γ
A

|RA|7

−
∑
β,γ

1
2ΩαβγR

β
AR

γ
A

|RA|7
+
∑
β,γ,ε

7
6ΩβγεR

α
AR

β
AR

γ
AR

ε
A

|RA|9

.
(16)

The forces on the QM atoms at which the basis functions are centered are given by

FαiA(I) =−δViA
δRαI

=
∑
A

qA

Cᾱ 1
|RA|

+
∑
β

µβ,ᾱ
RβA
|RA|3

+ 1
2
∑
β,γ

Θβγ,ᾱR
β
AR

γ
A

|RA|5

+ 1
6
∑
β,γ,ε

Ωβγε,ᾱR
β
AR

γ
AR

ε
A

|RA|7
+ 1

24
∑

β,γ,ε,κ

Φβγεκ,ᾱR
β
AR

γ
AR

ε
AR

κ
A

|RA|9

,
(17)

with Cᾱ, µβ,ᾱ, Θβγ,ᾱ, Ωβγε,ᾱ, and Φβγεκ,ᾱ the derivatives of charge, dipole moment,

quadrupole moment, octopole moment, and hexadecapole moment with respect to the coor-

dinates of the QM atoms RαI . Cᾱ and µβ,ᾱ are given by

Cᾱ = δC

δRαI
=
∑
µ,ν
Dµν

[〈
δχµ
δRαI

∣∣∣∣∣χν
〉

+
〈
χµ

∣∣∣∣∣ δχνδRαI

〉]
(18)

and

µβ,ᾱ = δµβ

δRαI
=
∑
µ,ν
Dµν

[〈
δχµ
δRαI

∣∣∣∣∣β
∣∣∣∣∣χν

〉
+
〈
χµ

∣∣∣∣∣ δβδRαI
∣∣∣∣∣χν

〉
+
〈
χµ

∣∣∣∣∣β
∣∣∣∣∣ δχνδRαI

〉]
. (19)

The other multipole derivatives are calculated in an analogous manner.
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5.2 Energy conservation for MTS simulations

Figure 9: Fluctuation of the total energy per atom for hydrogen flouride in vacuum obtained
from AIMD simulations at the combined CCSD(T)/cc-pVTZ and BLYP/PW levels of theory
with CCSD(T)/cc-pVTZ calculations only every nth step where n= 2,4,6,10,15, or 20.

Figure (9) shows the energy conservation in AIMD simulations at the combined CCSD(T)/cc-
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pVTZ and BLYP/PW levels of theory for the different MTS factors. The fluctuations of the

energy increase with increasing MTS factor. The stepped structure arise from the corrections

steps which lead to jumps in the energy. However, there is no drift in energy seen during

the simulations.
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