Bent crystal can effectively deflect charged particle beam by means of coherent effects in the electric field of crystal lattice. Since this field is more than one order of magnitude stronger than the field that can be achieved in modern superconducting magnets, a bent crystal can be considered as a very perspective accelerator element. It can be applied in particular, for crystal­based extraction or collimation purposes. Moreover deflection in strong cristalline electric field is very promising for generation of intense electromagnetic radiation. Therefore the development of the new schemes for high efficiency steering of charged particles by means of coherent effects is of crucial importance for accelerator physics. In this work the new schemes are proposed and developed. These schemes are studied through computer simulations by specially developed CRYSTAL simulation code. Moreover, some of them are verified experimentally, not only giving an insight into the physics of coherent interactions in a bent crystal, but also providing a feedback concerning simulations reliability. The CRYSTAL simulation code has been designed to calculate charged particles trajectories in interplanar or interaxial electric field taking into account incoherent scattering on both nuclei and electrons. The advantage of this code is simulations of suppression of incoherent multiple scattering due to the presence of crystal structure. Moreover, the code supports the varying the initial parameters, allowing one to calculate a set of data for a set of values of initial parameters during only one run of the code. MPI parallelization allows one to apply the code at supercomputers, though a lot of cases can be calculated at a personal mashine. This code was applied for simulations of all the coherent effects, studied in this work. Different schemes of steering of protons at the Future Circular Collider energy of 50 TeV were studied, simulated and optimized, in particular, the effects of volume reflection, multiple volume reflection in one bent crystal (MVROC) and in a sequence of bent crystals. Another importan scheme was the combination of the planar channeling effect and MVROC by means of channeling in skew crystal planes. This allows one both to increase the angular acceptance of channeling and to apply MVROC to the particles not captured under the channeling conditions. The bent crystal in this case will work also as a beam splitter. Moreover channeling itself can be amplified by the application of the narrow plane cut, reducing the phase space of positive channeling particles. It was shown, that the combination of this effect with channeling in skew planes allows one to achieve the deflection efficiency up to 99.9%. In this work channeling and volume reflection of sub­GeV electrons in a bent crystal is also studied both experimentally and by simulations. A record channeling efficiency of 40 % of 855 MeV electrons in a silicon bent crystal at Mainzer Mikrotron MAMI is reported. This becomes possible by the application of ultrashort bent crystal of 15 µm, considerably reducing the incoherent scattering contribution with respect to all the cases previously considered. Moreover, the first evidence of negatively charged particle channeling in germanium bent crystal at sub­GeV energies is reported. For both cases the measurements of dechanneling length, channeling efficiency and the volume reflection angles were carried out. The results are in agreement with theory and simulations. New effects, related to the planar channeling process, are predicted, namely planar channeling and quasichanneling oscillations in the deflection angle distributions. The idea of these effects consists in transformation of oscillations of a particle, being under channeling conditions, or of an over­barrier particle, moving still at rather small angle w.r.t. a crystal plane, into a series of peaks in the angular distribution of the beam deflected by a bent crystal. Planar channeling oscillations in the deflection angular distribution represent themselves by equidistant peaks and can be revealed only for positive particles. The quasichanneling oscillations are represented by nonequidistant peaks and can be observed for particles of either sign. The theoretical model of both kinds of peaks was created and verified by simulations. Moreover the first experimental observation of planar quasichanneling oscillations is reported for both 20.35 GeV electrons and positrons. The experiment was carried out at the SLAC Facility for Advanced Accelerator Experimental Tests. The measured peak positions were in agreement with both theory and simulations by the CRYSTAL code. Both kinds of oscillations can be applied for measurement and adjustment of the crystal alignment in order to reach higher channeling efficiency. In particular the fitting procedure of the peak positions of quasichanneling oscillations, carried out in this work, allows one to measure both crystal alignment and its curvature by using only one deflection angle distribution. All the results of this work are relevant for the application of bent crystals in future accelerator and collider projects for beam collimation and extraction purposes as well as for intense electromagnetic radiation generation.

Il cristallo curvo può effettivamente deflettere il fascio delle particelle cariche mediante effetti coerenti nel campo elettrico del reticolo cristallino. Poiché il questo campo è più di un ordine di grandezza più forte del campo che può essere ottenuto nei moderni magneti superconduttori, un cristallo curvo può essere considerato un elemento degli acceleratori molto prospettico. Può essere applicato in particolare, per gli scopi di estrazione o collimazione a base del cristallo. Inoltre la deflessione nel forte campo elettrico cristallino è molto promettente per la generazione di radiazione elettromagnetico intenso. Pertanto, lo sviluppo degli schemi nuovi per deflessione delle particelle cariche ad alta efficienza mediante gli effetti coerenti è dell'importanza fondamentale per la fisica degli acceleratori. In questo lavoro vengono proposti e sviluppati i schemi nuovi. I questi schemi sono studiati con gli simulazioni, usando il codice CRYSTAL specialmente sviluppato. Inoltre, alcuni schemi sono verificati sperimentalmente, non solo prevvedendo una visione della fisica delle interazioni coerente in un cristallo curvo, ma fornindo anche un feedback sull'affidabilità delle simulazioni. Il codice CRYSTAL è stato sviluppato per calcolare le traiettorie delle particelle cariche nel campo elettrico interplanare o interassiale, tenendo in conto dello scattering incoerente su i nuclei e gli elettroni. Il vantaggio del questo codice è la simulazione della soppressione dello scattering multiplo incoerente a causa della presenza di una struttura cristallina. Inoltre, il codice supporta la variazione dei parametri iniziali, consentendo di calcolare un set dei dati per un set delle valori dei parametri iniziali durante una sola esecuzione del codice. La parallelizzazione MPI consente di applicare il codice al supercomputer, sebbene molti casi possano essere calcolati in una macchina personale. Il questo codice è stato applicato per le simulazioni di tutti gli effetti coerenti, studiati in questo lavoro. Sono stati studiati, simulati e ottimizzati gli schemi diversi di deflessone dei protoni con l'energia del Future Circular Collider di 50 TeV, in particolare gli effetti del volume reflection, del multiple volume reflection in one bent crystal (MVROC) e nella sequenza dei cristalli curvi. Un altro schema importante è stata la combinazione dell'effetto di channeling planare e MVROC usando channeling nei piani cristallini inclinati. Ciò consente di aumentare l'accettazione angolare di channeling e di applicare MVROC alle particelle non catturate nelle condizioni di channeling. Il cristallo curvo in questo caso funzionerà anche come il separatore del fascio. Inoltre channeling può essere amplificato con applicazione del taglio piano stretto, riducendo lo spazio delle fasi delle particelle positive in channeling. È stato dimostrato che la combinazione del questo effetto con channeling in piani inclinati consente di raggiungere l'efficienza di deflessione fino al 99,9%. In questo lavoro, channeling e volume reflection degli elettroni di sub­GeV in un cristallo curvo vengono studiate sperimentalmente e con le simulazioni. Viene riportata un'efficienza di channeling record di 40% degli elettroni di 855 MeV in un cristallo curvo di silicio presso Mainzer Mikrotron MAMI. Ciò diventa possibile con l'applicazione di un cristallo curvo ultracorto da 15 μm, riducendo considerevolmente il contributo dello scattering incoerente rispetto a tutti i casi precedentemente considerati. Inoltre, viene riportata la prima evidenza di channeling delle particelle negative nel cristallo curvo del germanio all'energie di sub­GeV. In entrambi i casi sono state eseguite le misure della lunghezza dechanneling, dell'efficienza di channeling e degli angoli di volume reflection. I risultati sono in accordo con la teoria e le simulazioni. L'effetti nuovi, legati al processo di channeling planare, sono previsti, ovvero l'oscillazioni di channeling e quasichanneling planare nelle distribuzioni dell'angolo di deflessione. L'idea dei questi effetti consiste nella trasformazione dell'oscillazioni di una particella, essendo in condizioni di channeling, o di una particella sopra­barriera, che si muove ancora a un angolo piuttosto piccolo rispetto un piano di cristallo, in una serie dei picchi nella distribuzione angolare del fascio deflesso da un cristallo curvo. L'oscillazioni planari di channeling nella distribuzione angolare di deflessione si rappresentano da picchi equidistanti e possono essere rivelate solo per le particelle positive. L'oscillazioni di quasichanneling sono rappresentate da picchi non equidistanti e possono essere osservate per le particelle di entrambi i segni. Il modello teorico di entrambi i tipi di picchi è stato creato e verificato mediante gli simulazioni. Inoltre, la prima osservazione sperimentale dell'oscillazioni planari di quasichanneling è riportata per gli elettroni e per i positroni di 20.35 GeV. L'esperimento è stato condotto presso lo SLAC Facility for Advanced Accelerator Experimental Tests. Le posizioni dei picchi misurate erano in accordo con la teoria e le simulazioni fatti con il codice CRYSTAL. Entrambi i tipi dell'oscillazioni possono essere applicati per la misurazione e la regolazione dell'allineamento dei cristalli al fine di raggiungere l'efficienza di channeling più alta. In particolare, la procedura di fitting delle posizioni dei picchi delle oscillazioni di quasichanneling, eseguite in questo lavoro, consente di misurare l'allineamento del cristallo e la sua curvatura, usando solo una distribuzione dell'angolo di deflessione. Tutti i risultati del questo lavoro sono rilevanti per l'applicazione degli cristalli curvi in futuri progetti degli acceleratori e delle collidere per la collimazione del fascio e gli scopi di estrazione, nonché per la generazione di radiazione elettromagnetico intenso.

New schemes and experiments for high efficiency beam steering through coherent effects in bent crystals

SYTOV, Alexei
2018

Abstract

Bent crystal can effectively deflect charged particle beam by means of coherent effects in the electric field of crystal lattice. Since this field is more than one order of magnitude stronger than the field that can be achieved in modern superconducting magnets, a bent crystal can be considered as a very perspective accelerator element. It can be applied in particular, for crystal­based extraction or collimation purposes. Moreover deflection in strong cristalline electric field is very promising for generation of intense electromagnetic radiation. Therefore the development of the new schemes for high efficiency steering of charged particles by means of coherent effects is of crucial importance for accelerator physics. In this work the new schemes are proposed and developed. These schemes are studied through computer simulations by specially developed CRYSTAL simulation code. Moreover, some of them are verified experimentally, not only giving an insight into the physics of coherent interactions in a bent crystal, but also providing a feedback concerning simulations reliability. The CRYSTAL simulation code has been designed to calculate charged particles trajectories in interplanar or interaxial electric field taking into account incoherent scattering on both nuclei and electrons. The advantage of this code is simulations of suppression of incoherent multiple scattering due to the presence of crystal structure. Moreover, the code supports the varying the initial parameters, allowing one to calculate a set of data for a set of values of initial parameters during only one run of the code. MPI parallelization allows one to apply the code at supercomputers, though a lot of cases can be calculated at a personal mashine. This code was applied for simulations of all the coherent effects, studied in this work. Different schemes of steering of protons at the Future Circular Collider energy of 50 TeV were studied, simulated and optimized, in particular, the effects of volume reflection, multiple volume reflection in one bent crystal (MVROC) and in a sequence of bent crystals. Another importan scheme was the combination of the planar channeling effect and MVROC by means of channeling in skew crystal planes. This allows one both to increase the angular acceptance of channeling and to apply MVROC to the particles not captured under the channeling conditions. The bent crystal in this case will work also as a beam splitter. Moreover channeling itself can be amplified by the application of the narrow plane cut, reducing the phase space of positive channeling particles. It was shown, that the combination of this effect with channeling in skew planes allows one to achieve the deflection efficiency up to 99.9%. In this work channeling and volume reflection of sub­GeV electrons in a bent crystal is also studied both experimentally and by simulations. A record channeling efficiency of 40 % of 855 MeV electrons in a silicon bent crystal at Mainzer Mikrotron MAMI is reported. This becomes possible by the application of ultrashort bent crystal of 15 µm, considerably reducing the incoherent scattering contribution with respect to all the cases previously considered. Moreover, the first evidence of negatively charged particle channeling in germanium bent crystal at sub­GeV energies is reported. For both cases the measurements of dechanneling length, channeling efficiency and the volume reflection angles were carried out. The results are in agreement with theory and simulations. New effects, related to the planar channeling process, are predicted, namely planar channeling and quasichanneling oscillations in the deflection angle distributions. The idea of these effects consists in transformation of oscillations of a particle, being under channeling conditions, or of an over­barrier particle, moving still at rather small angle w.r.t. a crystal plane, into a series of peaks in the angular distribution of the beam deflected by a bent crystal. Planar channeling oscillations in the deflection angular distribution represent themselves by equidistant peaks and can be revealed only for positive particles. The quasichanneling oscillations are represented by nonequidistant peaks and can be observed for particles of either sign. The theoretical model of both kinds of peaks was created and verified by simulations. Moreover the first experimental observation of planar quasichanneling oscillations is reported for both 20.35 GeV electrons and positrons. The experiment was carried out at the SLAC Facility for Advanced Accelerator Experimental Tests. The measured peak positions were in agreement with both theory and simulations by the CRYSTAL code. Both kinds of oscillations can be applied for measurement and adjustment of the crystal alignment in order to reach higher channeling efficiency. In particular the fitting procedure of the peak positions of quasichanneling oscillations, carried out in this work, allows one to measure both crystal alignment and its curvature by using only one deflection angle distribution. All the results of this work are relevant for the application of bent crystals in future accelerator and collider projects for beam collimation and extraction purposes as well as for intense electromagnetic radiation generation.
GUIDI, Vincenzo
GUIDI, Vincenzo
File in questo prodotto:
File Dimensione Formato  
Sytov-thesis-final.pdf

Open Access dal 01/03/2019

Descrizione: Tesi
Tipologia: Tesi di dottorato
Dimensione 10.9 MB
Formato Adobe PDF
10.9 MB Adobe PDF Visualizza/Apri
Abstract_en.pdf

Open Access dal 01/03/2019

Descrizione: Abstract in English
Tipologia: Altro materiale allegato
Licenza: DRM non definito
Dimensione 223.56 kB
Formato Adobe PDF
223.56 kB Adobe PDF Visualizza/Apri
Abstract_it.pdf

Open Access dal 01/03/2019

Descrizione: Abstract in Italian
Tipologia: Altro materiale allegato
Licenza: DRM non definito
Dimensione 224.48 kB
Formato Adobe PDF
224.48 kB Adobe PDF Visualizza/Apri

I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/2478797
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact