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INTRODUCTION

The basic principle of coherent effects of charged particle interaction with a

crystal is an ordered atomic structure of the crystal substance, so-called crystal

lattice. In particular, if a charge particle hits a bent crystal at a very small

angle w.r.t. a crystal axis or plane, its penetration depth will considerably

increase. This is the basic idea of the channeling effect. Channeling is the

effect of the penetration of charged particles through a single crystal parallel to

its crystalline axes or planes, moving in the averaged field of the latter.

Stark was the first [1], who pointed out the possibility of the existence of

this effect in 1912. However, the first experimental confirmation of this effect

was obtained only in 1960 in the works of Davis et al. [2] who showed that,

in contrast to the case of amorphous solids, the distribution of the number of

ions over penetration depth in crystalline substances has a long tail at great

depths. To test these experiments, Robinson and Oen [3] in 1963 performed

numerical simulation of the penetration of ions into the crystal. They showed

that a small fraction of the ions incident on the crystal at a small angle to the

atomic plane or chain are localized inside the channel. Thus, theoretically, the

channeling phenomenon was first confirmed by simulations. Two years later,

Lindhard [4] developed a theory of channeling, in which he defined the critical

angle of capture under the channeling conditions.

The field of channeling was considerably extended in 1976, after Tsyganov

suggested using channeling in bent crystals to deflect charged particle beams [5].

This idea opened up huge opportunities for the use of crystals, in particular at

accelerators, where a bent crystal in many cases can replace bulky and expensive

electric deflectors and deflecting magnets. In addition, another important effect

of particle deflection, so-called volume reflection, was suggested in [6, 7], being

reflection of charged particles from curved crystalline planes.

Curved crystals possess wide opportunities for accelerator physics. Very

strong electric field, applied with accuracy to Angstrom, allow to deflect parti-

cles with high efficiency. The main advantage of bent crystals is their compact

dimensions, low cost and easy installation and operation. Bent crystals allow

one to control beams of different energies (from several MeV up to tens of TeV)

of different types of charged particles (protons, muons, electrons, positrons,

etc.).

Since then, experiments on deflection of beams with curved crystals have

been carried out in many of the world’s largest scientific centers: CERN

(Geneva, Switzerland), Fermi National Accelerator Laboratory (Fermilab)

(Batavia, USA), Brookhaven National Laboratory (Brookhaven, USA), IHEP
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(Protvino, Russia), PNPI (Gatchina, Russia), JINR (Dubna, Russia), INFN

(Italy), the Institute of Nuclear Physics (Mainzer Mikrotron MAMI, Germany)

and others [8–32, 34–37] and [A6, A7]. Moreover, bent crystals were applied

for beam collimation [38–49] and extraction [38, 41, 42, 50] from an accelerator

(IHEP, U-70 synchrotron; Fermilab, Tevatron; CERN, SPS and LHC). Apart

from these bent crystals represent a very promising instrument for generation of

X-ray and γ radiation, as shown by a number of experiments [32,34–37,51–56].

The work presented in this thesis is dedicated to the study of coherent effects

of beam steering by a bent crystal at ultrarelativistic energies.

The first chapter is devoted to the overview of the coherent effects, connected

with planar and axial channeling. In particular the motion in the average inter-

planar and interaxial potential is considered along with effects of multiple and

single scattering on nuclei and electrons. In addition the effects of dechanneling,

volume capture and volume reflection are discussed. Moreover some advanced

effects, such as multiple volume reflection in one bent crystal are described.

In the second chapter the model of particle dynamics in a bent crystal accom-

panied by processes of multiple and single Coulomb scattering as well as nuclear

scattering and the model implementation into the CRYSTAL simulation code

are introduced. Additionally the High Performance Computing (HPC) features

are described, namely Message Passing Interface (MPI) parallelization, as well

as the routine for variation of initial parameters for the solution optimization

problem.

The third chapter is dedicated to the application of the methods of beam

steering by means of bent crystals to the future accelerator projects on the

example of the Future Circular Collider. In this chapter the multiple volume

reflection in one bent crystal and a crystal sequence are considered. Moreover

the technique of channeling efficiency increase by means of the narrow plane cut

as well as channeling angular acceptance increase by means of the channeling

in skew planes are studied. The theoretical model to optimize the mentioned

effects is introduced. Finally, a way to apply these effects for beam steering at

the Future Circular Collider is proposed.

The forth chapter represents the results of the experiment at Mainz

Mikrotron MAMI, dedicated to sub-GeV electron steering in ultra-thin sili-

con and germanium bent crystals. In particular, the measuring of dechanneling

length and channeling efficiency as well as volume reflection angle in depen-

dence on the crystal bending radius is described. The results for different values

bending radius were obtained by the same crystal, bent by means of innovative

pieso-electric driven holder. The fitting model to extract channeling efficiency

and dechanneling length is introduced and applied to both experimental and
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simulation results. The influence of over-barrier particles to the dechanneling

length is also studied.

The fifth chapter is devoted to the process of channeling and over-barrier

(quasichanneling) oscillations and, in particular, to the way of their direct ex-

perimental observation, predicted in this work. For their observation it is sug-

gested to use the trajectories correlations, being transformed into series of peaks

in the deflection angle distribution. The mechanism of such transformation as

well as the observation conditions are introduced. This description is supported

by both analytical quantatitive model and Monte Carlo simulations. The rep-

resentation of these correlations in ionization loss process is also described.

Finally the first experimental observation of the quasichanneling oscillations in

the deflection angle distribution is presented.
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CHAPTER 1

COHERENT EFFECTS OF CHARGED PARTICLES

INTERACTION WITH A CRYSTAL

1.1 Introduction to the channeling effect

Channeling [4, 57–65] is the effect of the penetration of charged particles

through a monocrystal parallel to its atomic axes or planes (Fig. 1.1). The

principle idea of the effect the following. If charged particles move along crystal

axes or planes, they experience interaction with atomic planes or strings as

a hole, representing in fact coherent interaction with a crystal lattice, while

the incorrelated events of Coulomb scattering are suppressed. In other words,

charged particles flow in the field of atomic planes or axes with considerably

lower “resistance” than in amorphous media.

Fig. 1.1 qualitatively illustrates also the condition of the channeling effect.

It is possible only if the incident angle of the charged particle is lower than

its limiting value, so called critical channeling angle or Lindhard angle [4]. In

addition, one can notice the oscillatory character of motion of the channeling

particles, being consequently reflected by crystal planes or axes. This pecularity

leads to a wide number of coherent effects of deflections and reflections. One

can influence on this motion by changing the crystal orientation and, therefore,

by choosing different atomic planes or strings to exploit the coherent effects.

Moreover, since the atomic fields in the crystal lattice may exceed hundreds

of GeV/cm, being unachievable by existing technologies by using electric or

magnetic deflectors, coherent effects in crystals provide unique possibilities for

beam steering. Moreover, charged particles deflection in a such strong electric

field is accompanied by X-ray and γ radiation [59,63,66–69], providing another

promising application of bent crystals.

Figure 1.1: Illustration of channeling effect.
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1.1.1 An averaged atomic potential

The first theoretical model of the channeling effect was proposed by Jens

Lindhard [4]. His main idea was to apply the approximation of the averaged

atomic potential. In other words, if a charged particle enters the crystal at

rather low angle w.r.t. a crystal plane or axis, one can replace the sum atomic

potentials by an averaged atomic potential, representing the coherent interac-

tion with atomic axis or plane as a hole. Later the theory of channeling was

summarized in a lot of reviews and monographs [57–65].

The potential of an atomic plane can be calculated by using the potential of

a single atom V(x, y, z) in the following way (in the case of monoatomic crystal):

Vpl(x) = Ndpl

∫ ∞

−∞

∫ ∞

−∞
V (x, y, z)dydz, (1.1)

where the integration is carried out on the longitudinal coordinate z and the

transverse coordinate y, while x is another transverse coordinate, orthogonal to

the plane, dpl is the average interplanar distance, N is the atomic concentration.

The interplanar potential can be calculated as a sum (1.1) for different planes.

Since in a crystal lattice possesses periodic structure, the interplanar potential

can be written in the following way1:

Upl(x) =

∞
∑

i=−∞

Npl
∑

j=1

Vpl(x+ idpl j), (1.2)

where the first sum bears on the plane number, while the second one on the

number of different interplanar distances dpl j, the total number of which is Npl,

dpl =
∑Npl

j=1 dpl j/Npl (for equidistant planes Npl = 1, dpl = dpl 1). Usually, the

infinite sum can be cut off to the sum of several nearby atomic planes. If one

would like to calculate the potential at the crystal boundary, he must replace

in 1.2 one infinity sign by 0.

The potential of an atomic string can be calculated by using the potential

of a single atom V (x, y, z) in the following way:

Vax(x, y) =
1

dat

∫ ∞

−∞
V (x, y, z)dz, (1.3)

where the integration is carried out on the longitudinal coordinate z, dat is the

averaged interatomic distance in a string.

1Sometimes the interplanar potential will be marked as U(x), where only the planar case is considered.
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The interaxial potential can be found as a sum of the atomic strings (usually

several nearby atomic strings are already enough for high accuracy):

Uax(x, y) =
∞
∑

i=−∞

∞
∑

j=−∞
Vax(x− xax i, y − yax i), (1.4)

xax i and yax i are coordinates of atomic strings.

In a real crystal one must take into account also thermal vibrations of atoms.

The distribution of thermal oscillations in 3 dimensions represents gaussian

distribution:

w(x, y, z) =
1

(2πu2
1)

3/2
exp

(

−x2 + y2 + z2

2u2
1

)

, (1.5)

where u1 is the amplitude of thermal vibrations, being equal for silicon to 0.075

Å.

The potential of a crystal plane or axis, can be averaged by thermal vibra-

tions by using 1D and 2D distribution respectively:

wpl(x) =
1

√

2πu2
1

exp

(

− x2

2u2
1

)

, (1.6)

wax(x) =
1

2πu2
1

exp

(

−x2 + y2

2u2
1

)

, (1.7)

which can be found as:

Vpl0(x) =

∫ ∞

−∞
Vpl(x− χ)wpl(χ)dχ, (1.8)

Vax0(x, y) =

∫ ∞

−∞

∫ ∞

−∞
Vax(x− χ, y − υ)wpl(χ, υ)dχdυ, (1.9)

and can be used instead of Vpl(x) and Vax(x, y) in (1.2,1.4).

The simplest approximation of the interplanar potential is the harmonic

approximation:

Upl(x) =
4U0x

2

d2pl
, (1.10)

where U0 is the potential depth. Though such approximation is very rude, it

allows to find analytically the solution of the equation of motion (see below).

The atomic potential may be usually described as a Coulomb potential,

screened by the cloud of electrons. It can be written in the Tomas-Fermi model

[70] in the following way:

V (r) =
Zze2

r
Φsc

(

r

aTF

)

, (1.11)
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where Φsc is the screening function, r =
√

x2 + y2 + z2, Z the atomic number,

ze the charge of a particle, passing through the crystal, aTF = (9π2/128Z)1/3a0
the Tomas-Fermi screening radius, a0 the Bohr radius. There are different

approximations of atomic potential, depending on the screening function. The

first one the Lindhard potential [4], with the screening function Φsc

(

r
aTF

)

=

1−
(

1 +
3a2TF

r2

)−1/2

. The planar potential can be written in the following way:

V L
pl (x) = 2πNdplZze

2(
√

x2 + 3a2TF − x). (1.12)

Another approximation is the Molière potential [71–73] with the screening

function Φsc

(

r
aTF

)

=
∑3

i=1 αi exp
(

− rβi

aTF

)

, where α = (0.1, 0.55, 0.35) and β =

(6.0, 1.2, 0.3) and the planar potential, having the following form:

V Mol
pl (x) = 2πNdplZze

2aTF

3
∑

i=1

αi

βi
exp

(

− rβi
aTF

)

. (1.13)

The Molière approximation of the planar potential, averaged by thermal vibra-

tions, can be written analytically in the following way:

V Mol
pl0 (x) = 2πNdplZze

2aTF
∑3

i=1
αi

2βi
exp

(

β2

i u
2

1

2a2TF

)

×
[

exp
(

− xβi

aTF

)

erfc
(

1√
2

(

u1βi

aTF
− x

u1

))

+ exp
(

xβi

aTF

)

erfc
(

1√
2

(

u1βi

aTF
+ x

u1

))]

.
(1.14)

More realistic approximation as well as more simple to operate analytically is

the Doyle-Terner approximation [74]:

V DT (r) =
2√
π
Zze2a0

∑

i

ai

B
3/2
i

exp

(

− r2

Bi

)

, (1.15)

where Bi = bi/4π
2, ai and bi are the coefficients, that can be measured ex-

perimentally by X-ray diffraction. The direct connection with the experimen-

tal data is the main advantage of such approximation. There are a series of

works [75–80], providing similar results for the coefficients.

The Doyle-Terner potential (1.15) can be averaged by thermal vibrations

(1.5):

V DT
0 (r) =

2√
π
Zze2a0

∑

i

ai

(Bi + 2u2
1)

3/2
exp

(

− r2

Bi + 2u2
1

)

. (1.16)

The corresponding planar and axial Doyle-Terner potential can be written re-

spectively:

V DT
pl0 (x) = 2

√
πNdplZze

2a0
∑

i

ai
√

Bi + 2u2
1

exp

(

− x2

Bi + 2u2
1

)

; (1.17)
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Figure 1.2: Diamond-like lattice.

Figure 1.3: Crystal orientation along <100>, <110> and <111> axes of

diamond-like lattice.

V DT
ax0 (x, y) =

2

dat
Zze2a0

∑

i

ai
Bi + 2u2

1

exp

(

− x2 + y2

Bi + 2u2
1

)

. (1.18)

The materials of diamond-like lattice, namely C, Si, Ge, are widely used

in channeling experiments. The structure of the diamond lattice consists of

two face-centered cubic lattices shift along the bulk diagonal w.r.t. each other

by one quarter of their length [81–83]. This lattice is presented in Fig. 1.2.

Several planes and axes are widely used, namely <100>, <110>, <111> and

(100), (110) and (111). The planes (100), (110) and (111) are marked in Fig.

1.2, while the direction along the axes <100>, <110>, <111> is shown in Fig.

1.3. The interplanar distances for the crystal planes as well as the interatomic

distances for the crystal axes (both formulae and values for Si and Ge) are

presented in Table 1.1.

The comparison of different planar potentials is shown in Fig. 1.4 for (100),

(110) and (111) silicon planes at room temperature. Hereinafter the coefficients

of the Doyle-Terner potential from [78] were used. One can notice, that in

contrast to (100) and (110), planes the (111) planes are not equidistant. One
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Figure 1.4: Interplanar Doyle-Terner, Molière and harmonic potential for

positively charged particles for (100), (110) and (111) silicon planes.
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Figure 1.6: Interaxial Doyle-Terner potential for positively charged particles for

<100>, <110> and <111> silicon axes.
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Table 1.1: Lattice parameters of diamond-like crystals.

Material Lattice i dpl i, Å dat i, Å

const, Å (100) (110) (111) <100> <110> <111>

a 1 a/4 a/2
√
2 a

√
3/4 a a/

√
2 3a

√
3/4

2 a/4
√
3 a

√
3/4

Si 5.43 1 1.36 1.92 0.78 5.43 3.84 2.35

2 2.35 7.05

Ge 5.66 1 1.42 2.00 0.82 5.66 4.00 2.45

2 2.45 7.35

can also notice a smoothed maximum, caused by thermal vibrations. This kind

of potentials is valid for positive particles, while for the negative ones it is turned

over, as shown in Fig. 1.5.

The interaxial Doyle-Terner potentials for <100>, <110>, <111> (for posi-

tive particles) are shown in Fig. 1.6. One can observe in this figure the structure

of atomic strings.

1.1.2 Planar channeling

As it was mentioned above, if a particle hits a bent crystal at a sufficiently

small angle w.r.t. its atomic axis or planes, it will be captured in the regime

of channeling motion. From the point of view of the potential (Figs. 1.4-1.6)

it means underbarrier motion, where the underbarrier part of the potential

represents a channel.

The channeling motion can be treated by two different approaches, namely

by classical and quantum mechanics. The choice depends on both the particle

type and its energy and generally depends on the number of quantum levels

inside the channel. The number of the levels Nqm for planar channeling can be

estimated by the following formula [63]:

Nqm ∼ dpl
λ̄c

√

EU0

m2
, (1.19)

where E is the particle energy, m its mass, λ̄c the reduced Compton length.

If the condition Nqm ≫ 1 is valid, a classical approach is applicable. For light

particles, namely for electrons and positrons, one can sicurely apply the classical

equations starting from the energies of ∼100 MeV, being ultrarelativistic. On

the other hand for protons and heavy ions one can apply the classical approach
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even at the energies of several of MeV, meaning non-relativistic particles. Since

the results of this work concern only ultrarelativistic energies, starting from

∼GeV for electrons and from ∼ 102 GeV for protons, one can assume, that

the classical approach is always valid in all the cases, considered below. The

quantum approach is described in more details for instance in the following

works [57, 59, 61, 63, 64]. Also the radiation, produced by a charged particle,

moving in a crystal, is well described in [59, 63, 64, 66–69].

In order to formulate the equations of motion, one must write down the full

energy of a particle for the case of atomic planes:

E =
√

p2xc
2 + p2yc

2 + p2zc
2 +m2c4 + Upl(x) = const, (1.20)

where px, py and pz are the components of the particle momentum, c speed

of light. The y-component, being parallel to the plane, can be included into

the longitudinal z-component. Since the condition px ≪ pz is always valid for

channeling particles (compare the maximal value of potential, being tens of eV

and the particle energy) one can extract the transverse component from the

square root as:

E = p2xc
2/Ez + Ez + Upl(x) = const, (1.21)

where Ez =
√

p2zc
2 +m2c4 is the longitudinal energy, while

ǫ = p2xc
2/Ez + Upl(x) (1.22)

is so-called transverse energy. By assuming p ≈ pz and E ≈ Ez as well as by

using px = pzθx, where θ is the angle of a particle w.r.t. the crystal plane, and

E = pc2/v, one can also rewrite (1.22) in the following way:

ǫ =
pv

2
θ2 + Upl(x) = const. (1.23)

Let us assume that it is conserved, as already marked in (1.23). Before resolving

the particle trajectory one can find the condition of capture of a particle under

the channeling conditions, namely ǫ ≤ U0. This can be transformed into the

condition of the incident angle:

θ < θL =

√

2U0

pv
, (1.24)

where θL is so-called critical channeling angle or Lindhard angle.

The trajectory can be calculated from (1.23) by using θx =
dx
dz
:

z(x) =

∫ x

x0

√
pvdχ

√

2(ǫ− Upl(χ))
, (1.25)
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where x0 is the initial transverse coordinate, while the initial longitudinal coor-

dinate is assumed to be equal to 0. Since no assumptions have been done about

under-barrier motion yet, Eq. (1.25) is valid also for the over-barrier motion.

The equation of motion can be written if one finds a derivative on z of the

Eq. (1.23):
d2x

dz2
+

U ′
pl(x)

pv
= 0. (1.26)

Here U ′
pl(x) represents the interplanar electric field, shown for both silicon and

germanium for both (110) and (111) planes in Fig. 1.7. One can notice that in

general the electric field for germanium is considerably higher than for silicon.

Higher electric field is promising for both particle deflection, since higher de-

flection angles become possible, and radiation emission intensity. As it will be

shown below, the process of deflection is more efficient for higher Z-materials

at higher energies of hundreds GeV, while at lower energies scattering influence

worsen the efficiency.

For the harmonic approximation of the potential (1.10) one can find an

analytical solution of this equation:

x =
dpl
2

√

ǫ

U0
sin(2π

z

λ
+ ϕ0); (1.27)

θ =

√

2ǫ

U0
cos(2π

z

λ
+ ϕ0), (1.28)

where ϕ0 is the initial phase, that can be found from initial conditions,

λ = πdpl

√

pv

2U0
(1.29)

is the channeling oscillation length, being usually a good estimate for the real

case. In other words, a particle under the planar channeling conditions per-

forms oscillations called planar channeling oscillations. Such oscillations are

also possible for over-barrier motion at still rather small angles w.r.t. to the

crystal planes. These oscillations are called planar quasichanneling oscillations

as well as such mode of over-barrier motion is called the quasichanneling mode.

1.1.3 Axial channeling

When a crystal is aligned along crystal axes, charged particles will move in

their potential (see Fig. 1.6). However, the behavior of charged particles of

different sign is different. Unlike the planar case (see Figs. 1.4-1.5) in the axial

one the potential well depth is different.
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Figure 1.7: Interplanar electric field for both silicon (red, solid) and germanium

(blue, dashed) crystals for both (110) (left) and (111) (right) planes in

Doyle-Terner approximation.

In the case of positively charged particles it is very low, namely few eV

in spite of the potential maximum, being ∼ 102 eV. Since the probability of

capture under the channeling conditions is very low, such regime is called hyper-

channeling [84]. The remaining part of particles will move freely in transverse

direction, sometimes experiencing scattering by atomic strings.

Negatively charged particles can be captured under the axial channeling

conditions by profound potential wells (being potential maximum for positively

charged particles).

Apart the transverse energy, transverse motion in interaxial potential is

characterized by angular momentum L. The angle θ of particle incidence

w.r.t. a crystal axis can be factorized [85] by radial θr = dr/dz and azimutal

θϕ = rdϕ/dz components: θ2 = θ2r + θ2ϕ, where r2 = x2 + y2 is the radial coor-

dinate. The conserved angular momentum has the form L = pθϕr = pr2dϕ/dz.

Consequently, the transverse energy (1.23) can be written as:

ǫ =
pv

2
θ2 + Uax(r) =

pv

2

(

dr

dz

)2

+
L2

2mγr2
+ Uax(r) = const, (1.30)

where the following relativistic expression was used p = γmv, γ is the Lorentz

factor. One can notice that here an assumption of radial symmetry of the

potential Uax(r), which is nearly correct not far form the center of the axis. In

analogy to the planar case (see (1.25)) the particle trajectory can be extracted

in the following way:

z(r) =

∫ r

r0

√
pvdρ

√

2(ǫ− Upl(ρ))− L2

2mγρ2

. (1.31)

Taking into account dϕ = dzL/pr2, one also find the trajectory in the transverse
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plane:

ϕ(r) =

∫ r

r0

L/
√
mγρ2dρ

√

2(ǫ− Upl(ρ))− L2

2mγρ2

. (1.32)

However, in real situation one must take into account that the symmetry

of interaxial field is not radial. Therefore, one can switch to the Cartesian

coordinate system, in which θ2 = θ2x + θ2y, θx = dx/dz, θy = dy/dz and the

equation (1.30) can be rewritten as:

ǫ =
pv

2
θ2 + Uax(x, y) =

pv

2
(θ2x + θ2y) + Uax(x, y) = const. (1.33)

Differentiation by z will give the system of equations, analogical to (1.26):














d2x

dz2
+

U ′
ax x

pv
= 0;

d2y

dz2
+

U ′
ax y

pv
= 0.

(1.34)

The Lindhard angle for axial channeling can be found analogically to the

planar case as

θLax =

√

2U0ax

pv
, (1.35)

where U0ax is the potential well depth of the axial channel. Since the maximal

value of the axial potential is higher than that of the planar one with a factor

of ∼ 5, the axial Lindhard angle for negatively charged particles is 2–3 times

higher than the planar one. In other words, atomic strings possess stronger

electric field than that of planes, which potentially provides stronger deflection

as well as radiation effects. For positively charged particles the Lindhard angle

is several times smaller. Nevertheless the strength of electric field is the same

on module, therefore the possibilities for deflection and radiation are valid also

for positively charged particles.

1.1.4 Multiple and single scattering

Incoherent scattering on nuclei and electrons can break the trasverse energy

conservation law (1.23, 1.30, 1.33) and change the particle trajectory.

There are several kinds of incoherent scattering in a crystal media:

1) Coulomb scattering;

2) nuclear elastic (no loss of a particle; no energy loss);

3) nuclear quasielastic (no loss of a particle; energy loss; disintegration of

the nucleus, on which scattering occurs);
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4) nuclear inelastic (particle loss; disintegration of the nucleus, on which

scattering occurs).

The first type of scattering is Coulomb scattering. A particle can be scat-

tered by a screened atomic potential as a whole or by a single electron, causing

atom ionization.

Coulomb scattering on atom can be treated by a well fitted cross section of

screened atom [71, 86, 87], based on Yukawa potential:

dσC

dΩ
= 4

z2Z2e4

p2v2
1

(ϑ2 + ϑ2
1)

2
, (1.36)

where ϑ1 = ~
√

1.13 + 3.76(zZe2/~v)/(paTF ) is the so-called characteristic scat-

tering angle [71, 86], dΩ is the element of a solid angle.

By using this cross section and taking into account dΩ = ϑdϑdϕ one can find

the r.m.s. angle of multiple scattering in a material of thickness ∆z. However,

one must take into account that in a crystal the scattering cross section is

divided onto coherent and incoherent part [66, 88]:

dσC

dΩ
=

dσC

dΩ inc
+

dσC

dΩ coh
, (1.37)

where the incoherent part can be expressed from (1.36) by using the Debye-

Waller factor exp(−p2ϑ2u2
1):

dσC

dΩ inc
=

dσC

dΩ

(

1− exp(−p2ϑ2u2
1)
)

. (1.38)

Therefore the r.m.s. multiple scattering angle can be written as:

< ϑ2
Cms >=< nN > ∆z

∫ ϑ2

0

∫ 2π

0

dσC

dΩ

(

1− exp(−p2ϑ2u2
1)
)

dϕϑdϑ, (1.39)

where < nN > is the average nuclear density along the trajectory element ∆z.

The direct calculations lead to the following equation:

< ϑ2
Cms >= 4π < nN > ∆z

(

zZe2

pv

)2
[

ln

(

1 +

(

ϑ2

ϑ1

)2
)

+
(

1 + p2ϑ2
1u

2
1

)

×

exp
(

p2ϑ2
1u

2
1

) (

E1

(

p2
(

ϑ2
1 + ϑ2

2

)

u2
1

)

− E1

(

p2ϑ2
1u

2
1

))

+
1− exp

(

−p2ϑ2
2u

2
1

)

1 +
(

ϑ2

ϑ1

)2






,

(1.40)

where E1(x) =
∫∞
x exp(−t)dt/t is the exponential integral. The angle ϑ2 is

the angle, limiting multiple scattering. Indeed, according to Molière [71, 86],
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the scattering distribution possesses a nearly gaussian form only in the center

(in zero approximation), having long non-gaussian tales. Therefore the single

scattering events on atom must be treated separately [62, 69, 88–92] according

to (1.36, 1.38).

Any type of single scattering events is defined by scattering length Lsc, that

is the length, used in the exponential cumulative distribution function for the

probability of scattering:

Fsc(s) = exp (−s/Lsc) , (1.41)

where s markes the passed distance. Any scattering length can be calculated

by using the cross section of such event σsc and the nuclear density, averaged

along the trajectory:

Lsc = 1/ < nN > σsc. (1.42)

The cross section of single Coulomb scattering on an atom can be calculated

by integration (1.36):

σCss = 2π

∫ ϑmax

ϑ2

dσC

dΩ
ϑdϑ = 4π

(

zZe2

pv

)2(
1

ϑ2
1 + ϑ2

2

− 1

ϑ2
1 + ϑ2

max

)

, (1.43)

where ϑmax = ~/pRN is the maximal scattering angle, determined by the nu-

cleus radius RN , providing the length of the next Coulomb single scattering

as:

LCss = 1/

(

4π < nN >

(

zZe2

pv

)2(
1

ϑ2
1 + ϑ2

2

− 1

ϑ2
1 + ϑ2

max

)

)

. (1.44)

Another type of single scattering event is scattering on electrons. Its cross

section is represented by a “usual” Rutherford cross section [93]:

dσCe

dΩ
= 4

z2e4

p2v2
1

ϑ4
. (1.45)

However, the main parameter, defining scattering on electrons is the kinetic

energy, transfered to electron Te = p2ϑ2/2me, where me is the electron mass.

Therefore, in order to find the electron cross section, one must use the formula,

similar to (1.43) and substitute under the integral ϑ by T :

σess =

∫ Tmax

Tmin

dσCe

dT
dT = 4π

(

ze2

v

)2(
1

2mTmin
− 1

2mTmax

)

, (1.46)

where Tmax = 2me(γβ)
2/(1 + 2meγ/m+ (me/m)2) is the maximal energy that

can be lost for ionization [94], while Tmin is the ionization potential that can be
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Figure 1.8: Interplanar nuclear density for both silicon (red, solid) and

germanium (blue, dashed) crystals for both (110) (left) and (111) (right) planes.

found as the Fermi energy at the point of scattering, β = v/c. Consequently,

the length of the next single Coulomb scattering on electron can be calculated

similarly to (1.44):

LCe = 1/

(

4π < ne >

(

ze2

v

)2(
1

2mTmin
− 1

2mTmax

)

)

, (1.47)

where < ne > is the averaged electronic density along the trajectory.

Nuclear scattering is important only for channeling hadrons (protons, ions).

The length of nuclear scattering events Lel, Ldiff , Linel (elastic, diffractive and

inelastic respectively) almost do not depend on the energy and can be usually

found in the literature [94] for any type of material. One must only recalculate

this length, taking into account the atomic density along the trajectory:

Lsc < nN > /N. (1.48)

Since all types of scattering depend on the nuclear and electron density

distributions, it is important to calculate them for the channels, considered

above (see Figs. 1.6,1.7). The nuclear density is proportional to the distribution

of thermal oscillations (1.6–1.7):

nNpl(x) = Ndplwpl(x) =
Ndpl
√

2πu2
1

exp

(

− x2

2u2
1

)

; (1.49)

nNax(x, y) = wax(x, y)/dat =
1

2πdatu2
1

exp

(

−x2 + y2

2u2
1

)

. (1.50)

The corresponding distribution for both (110) and (111) planes for both Si and

Ge crystals is shown in Fig. 1.8.
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The electron density distribution ne can be found by using the Poisson equa-

tion ∆U = 4πe2(ne + ZnN). One can find both interplanar nepl and interaxial

neax electric density as

nepl(x) =
U ′′
pl(x)

4πe2
− ZnNpl(x); (1.51)

neax(x, y) =
∆Uax(x, y)

4πe2
− ZnNax(x, y). (1.52)

The corresponding distribution for both (110) and (111) planes for both Si and

Ge crystals is shown in Fig. 1.9. One can notice that the electron density for

germanium is more than twice higher, resulting in higher probability of single

scattering on electrons the for Si.

1.1.5 Dechanneling

Particle scattering considered above may cause change of transverse energy

(1.23,1.33), which can be expressed in the following way:

∆ǫ = ǫ+∆ǫ− ǫ =
pv

2
(θ + ϑ)2 − pv

2
θ2 = pvθϑ+

pv

2
ϑ2. (1.53)

Moreover the energy change can be strong enough that a channeling particle can

become the overbarrier one. This process is called dechanneling [4,57–65,95–98].

Since scattering is possible on either nuclei or electrons, two types of dechan-

neling can be marked out, namely nuclear and electronic dechanneling. Scat-

tering on nuclei is considerably stronger than that on electrons. Therefore it

should be the main reason of particle escape the channeling conditions.

However, there is a strong difference between channeling of positively and

negatively charged particles. For negative particles the atoms are placed in the
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Figure 1.9: Interplanar electron density for both silicon (red, solid) and

germanium (blue, dashed) crystals for both (110) (left) and (111) (right) planes.
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center of the channel, while for the positive ones they are at the channel bound-

ary (see Figs. 1.3-1.6). This means strong influence of nuclear dechanneling for

the negative particles and relatively weak for the positive ones. Moreover, by

this reason there is no sense to differ electronic and nuclear dechanneling for

negatively charged particles, because of higher contribution of nuclear dechan-

neling w.r.t. the electronic one. In opposite, for positive perticles the nuclear

scattering is suppressed outside a thin zone, being near the atomic plane, defined

by the Tomas-Fermi screening radius [61, 62] ∼ ±aTF = xcr. In the remaining

part of the channel electronic dechanneling makes the principle contribution.

The process of transverse energy increase can be described in terms of the

diffusion theory [62, 95–97]. The simplest case, namely electronic dechanneling

of positively charged particles under planar channeling conditions is well treated

by the diffusion equation:

∂F

∂z
=

1

2

∂

∂ǫ

(

De(ǫ)
∂F

∂ǫ

)

, (1.54)

where F is the distribution function, De the diffusion coefficient. The transverse

energy is assumed to be less than the critical trasverse energy value ǫ < Ecr

where the nuclear dechanneling is suppressed, namely the level of the energy at

xcr: Ecr = Upl(xcr). Assuming [62,96,97] De = De0ǫ one obtains the solution in

the following form:

F (z, ǫ) =

∞
∑

k=1

CkJ0

(

j0,k

√

ǫ

Ecr

)

exp

(

−j0,kDe0z

4Ecr

)

, (1.55)

where j0,k is the k-th zero of the Bessel function J0, Ck follows from the particle

initial distribution on the transverse energy F0(ǫ):

Ck =
1

J2
1 (j0,k)Ecr

∫ Ecr

0

F0(ǫ)J0

(

j0,k

√

ǫ

Ecr

)

dǫ. (1.56)

The dechanneling length can be determined by the exponent function in (1.55).

Since j0,1 is several times lower than j0,2 etc. the items with k > 1 are sup-

pressed. Therefore one can define the dechanneling length from the first item

of (1.55) in the following way:

Ledech0 =
4Ecr

j20,1De0
=

256

9π2

pv

ln(2γmec2/I)− 1

aTFdpl
zZe2

, (1.57)

where I is the ionization potential. Moreover, this defines the exponential

low of channeling fraction ηch (the number of particles being under channeling
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Figure 1.10: Channeling and volume reflection in a bent crystal.

conditions at the longitudinal coordinate z w.r.t. the number of all the particles,

passing the crystal at the same coordinate) decrease:

ηch = ηch0 exp (−z/Ledech0) , (1.58)

where ηch0 is the initial channeling efficiency value. One can do also a conclusion

that the electronic dechanneling length in a straight crystal increases almost

proportionally to the energy value. The exponential dependence (1.58) is also

valid in some cases for the nuclear dechanneling length Lndech0, which will be

discussed later.

Note that the planar oscillation length (1.29) is proportional to the square

root from the energy. Such dependence can be explained by the fact that the

scattering angle (see above) is inversely proportional to the energy while the

critical channeling angle (1.24) to the square root from the energy.

Therefore, one can conclude that the channeling conditions become more

pronounced at higher energies, while incoherent scattering becomes more sup-

pressed.

1.2 Coherent effects in a bent crystal

1.2.1 Channeling

The main idea of beam steering in a bent crystal [5] is to deflect a particle

beam following bent crystal planes or axes as schematically shown in Fig. 1.10.

The simplest example of coherent effect for beam steering in a bent crystal is

the channeling effect.
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Figure 1.11: Interplanar potential in a bent silicon crystal of different bending

radius for both (110) (left) and (111) (right) planes for both positively (top) and

negatively charged particles (bottom).

The main difference of the potential well is the centrifugal term pv/R, where

R is the crystal bending radius. This results in the effective interplanar poten-

tial, that can be written as2:

Ueff pl(x) = Upl(x) + pvx/R (1.59)

for the planar case and

Ueff ax(x, y) = Uax(x, y) + pvx/R (1.60)

for the axial one, assuming horizontal bending. An example of Doyle-Terner

interplanar potential in a bent crystal is in Fig. 1.11 for both positively and

negatively charged particles. One can notice, that the channeling effect is still

possible, though the potential well depth becomes lower with decrease of bend-

ing radius. The transverse electric field is shifted in a vertical direction on the

value pv/R.

U ′
eff x = U ′

x + pv/R, (1.61)

2Sometimes this potential will be marked as Ueff (x), where only the planar case is considered.
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Figure 1.12: Interplanar electric field in a bent silicon crystal of different bending

radius for both (110) (left) and (111) (right) planes.

being valid for both planar and axial cases. The example of electric field for the

planar case is shown in Fig. 1.12. The planar channeling effect is still possible,

when the electric field can change the sign, representing the extrema condition.

This is possible, when the maximal electric field E0 is higher than 1/R, giving

the critical radius value:

Rcr =
pv

E0
. (1.62)

One can notice that the critical radius is proportional to the energy. Con-

sequently one may suppose that if one fixes the potential well shape, when

increasing the energy, one must reduce the bending angle, being:

θb =
lcr
R
, (1.63)

where lcr is the crystal length. However, as has been discussed above, the

dechanneling length is nearly proportional to the particle energy (1.57), which

is valid also for a bent crystal of fixed potential well shape. In particular, it can

be estimated in the harmonic approximation (1.10) in the following way [62,65]:

Ledech = Ledech0(1−
Rcr

R
)2. (1.64)

In other words, one can increase the crystal length, proportionally to pv, achiev-

ing the same channeling efficiency for the same bending angle.

Unfortunately, there are other limits, restricting the crystal length growth.

Apart the logarithmic term in the denominator of Eq. (1.57), it is the inelastic

loss rate (essential for channeling hadrons), with a weak dependence on the

energy.

The Lindhard angle (1.24) is also changed, since the potential well depth

decreases w.r.t. that of the straight crystal. One can generalize the Lindhard

angle also for a bent crystal by using the right value U0 of the potential well

depth.
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In order to rewrite the equations of motion, one must replace the potential

in the transverse energy expressions (1.23,1.33) by the effective one (1.59-1.60):

ǫ =
pv

2
θ2 + Upl(x) +

pvx

R
= const, (1.65)

ǫ =
pv

2
θ2 + Upl,ax(x, y) +

pvx

R
= const. (1.66)

for the planar and the axial cases respectively, giving the equations of motion:

d2x

dz2
+

U ′
pl x

pv
+

1

R
= 0, (1.67)















d2x

dz2
+

U ′
ax x

pv
+

1

R
= 0;

d2y

dz2
+

U ′
ax y

pv
= 0.

(1.68)

Therefore, the conditions of the channeling effect in a bent crystal are the

incident angle to be less than the Lindhard angle as well as the bending radius

to be more than the critical one. Obviously the channeling efficiency in a bent

crystal depends not only on the crystal length and particle energy but also on

the rate R/Rcr, which will be discussed later.

1.2.2 Volume reflection

Another effect becomes possible in a bent crystal, being not possible in a

straight one. When an overbarrier particle flies towards a bent crystal plane,

it may be reflected in opposite direction, as schematically shown in Fig. 1.10.

This effect is called the volume reflection effect [6, 7].

Volume reflection can be simply illustrated on the potential well diagram

Fig. 1.13. This effect may occur, if a particle moves towards a potential barrier

on which it will be reflected. The volume reflection effect is possible at negative

angles of crystal alignment θcr, i.e. positive incident angles θx0 (see Fig. 1.10),

otherwise it will initially move away from the reflection point and a reflection

will not occur. However it must not exceed on module the crystal bending

angle, or the particle will not achieve the reflection point. This condition of

volume reflection can be written in the following way:

0 < θx0 < θb. (1.69)

The angle of volume reflection is not constant and depends on bending radius

as well as on the transverse energy value. Indeed, the trajectory of a particle
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Figure 1.13: The interplanar potential well for the bent Si (110) crystal of 4 mm

length and 50 µrad bending angle for 7 TeV protons.

can be calculated by using the trasverse energy expression (1.65) analogically

to (1.25):

z(x) =

∫ x

x0

√
pvdχ

√

2(ǫ− Upl(χ)− pvχ/R)
. (1.70)

The coordinate z is the coordinate in a co-rotating reference system, directed

along a bent crystal plane. By division this coordinate by the bending radius

(compare Eq. (1.63)) one can transform it to the angle of deflection by bent

crystal planes. However, it is necessary to take into account that this is not

channeling but over-barrier motion. Therefore one must subtract from (1.70)

the coordinate, obtained by (1.70) but with “switched off” interplanar potential:

z0(x) =

∫ x

x0

√
pvdχ

√

2(ǫ− Upl(xref(ǫ))− pvχ/R)
, (1.71)

where xref is the coordinate of the reflection point. Taking into account also

both parts of a trajectory to and from the reflection point, one obtains the angle

of volume reflection [6, 7, 99, 100]:

α = 2
z(xref)− z0(xref)

R
=

∫ xref

x0

( √
2pv

√

ǫ− Upl(χ)− pvχ
R

−
√
2pv

√

ǫ− Upl(xref(ǫ))− pvχ
R

)

dχ,
(1.72)

which confirms the dependence of the volume reflection effect on the bending

radius as well as on the energy and the potential well shape. Qualitatively the

trends of this dependence can be explained in terms of the potential well (Fig.

1.13). The time of a particle approach to the reflection point depends on its
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distance from the point of potential maximum. In classical mechanics [85] it is

proved that this time increases if the reflection point approaches to the point

of maximum, tending to infinity.

Therefore, in order to increase the volume reflection angle, one must make

the bending radius as high as possible. Though α will never go to infinity but

tend to a constant level, it may exceed the critical channeling angle up to 50%.

More detailed investigation of the volume reflection process, both theoretical

and experimental is described below.

1.2.3 Dechanneling, volume capture and rechanneling

Since incoherent scattering can change the transverse energy of a charged

particle, the latter can either enter or escape the channeling mode. The process

of a particle escape the channeling conditions, so-called dechanneling, has been

considered above. The dependence of the channeling fraction of the penetration

depth can be approximated (not always [98]) by the exponential low:

ηch = ηch n exp (−z/Lndech0) + ηch e exp (−z/Ledech0) , (1.73)

where ηch n and ηch e are the fractions of channeling particles inside and outside

the zone of nuclear scattering influence (xcr). Since in the case of negative

particles all of them cross the atomic plane during their motion, only the first

item of (1.73) can be considered.

The process of volume capture [101–104] is an inverse process w.r.t. dechan-

neling. In other words, an initially overbarrier particle, flying towards the vol-

ume reflection point, can be scattered, when passing the atomic plane, and

captured under the channeling conditions as shown in Fig. 1.13. Though in

theory nothing prevents the same process in a straight crystal, only in a bent

one a trasverse energy value can approach the value of potential barrier due

to centrifugal term (see (1.59)). The conditions of volume capture generally

concide with the conditions of volume reflection.

Therefore, due to the process of volume capture the channeling effect be-

comes possible not only for the angles of crystal alignment, lower than the

Lindhard angle but also beyond this range. The condition is the same as for

volume reflection (1.69). However, evidently the channeling efficiency of vol-

ume captured particles will be considerably less than that of initially channeling

particles.

There is a value of crystal alignment, being optimal for volume capture

manifestation, namely θcr = −θb or

θx0 = θb, (1.74)
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when a particle reaches the volume reflection point nearly at the end of the

crystal. In such a way a particle remains under the channeling conditions by

the end of the crystal. In fact the transverse energy value remains still close

to that of volume reflected particle, so one has mixing of both volume capture

and volume reflection.

It is important that even dechanneled particle can be recaptured again un-

der the channeling conditions also due to incoherent scattering. This process,

so-called rechanneling can be followed again by dechanneling and so on. One

must underline here that the influence of the processes of dechanneling and

rechanneling on the channeling efficiency are considerably higher for negatively

charged particles than for the positive ones [29]. This is explained by the posi-

tion of the crystal planes, being at the channel boundary for positive particles

and in the channel center for the negative ones.

All these processes are considered in more details both experimentally and

by simulations in the following chapters.

1.2.4 Coherent effects in the field of atomic strings in a bent

crystal

Axial channeling, considered above for straight crystal remains valid also

for the bent one. However, for positively charged particles the potential well

depth is low, while for negative particles it is high but incoherent scattering on

atomic strings, being in the channel center, contribute a lot. Therefore most

of particle become overbarrier. By this reason the main contribution is made

by coherent action of several atomic strings and their interference, represented

by skew crystal planes, shown in Fig. 1.2.4 on example of the <111> axis

(compare also Fig. 1.6). One can notice a lot crystal planes, intersected by

the same axis. The electric field strength of various planes is different, because

of different 2-dimensional atomic concentration inside a plane. The strongest

planes are (110), one of which is vertical in Fig. 1.2.4.

If a particle angle is low enough w.r.t. some skew crystal planes, this particle

can be reflected by means of volume reflection or even be captured under the

channeling conditions by these skew planes. In other words, all the effects,

considered above for vertical bent crystal planes, are also valid for the skew

ones. The only difference is that the centrifugal component is not directed

normally w.r.t. the plane. Therefore, there is a components of centrifugal force,

directed normally and along the skew crystal plane. If one chooses the direction

of x and y coordinate as normal and tangential, the equations of motion (1.67)
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Figure 1.14: Skew crystal planes, intersecting by the ¡111¿ axis.

will be rewritten as:














d2x

dz2
+

U ′
pl x

pv
+

1

R
cosαpl = 0;

d2y

dz2
+

1

R
sinαpl = 0,

(1.75)

where αpl is the angle of inclination a skew crystal plane (for the vertical one

αpl = π/2). In other words, one can introduce an effective bending radia of a

skew plane Rx = R/ cosαpl and Ry = R/ sinαpl, application of which in (1.75)

leads to the same description of channeling, dechanneling, volume reflection,

volume capture, etc. as previously.

In a real situation some particles are captured under the channeling con-

ditions at the orientation, being optimal for axial channeling. The overbarrier

particle can experience consequent scattering on several atomic strings, also

causing beam deflection in the direction of crystal bending. This effect is called

stochastic deflection [105, 106]. It was observed experimentally for particles

of both signs [19–22]. However, at some penetration depth particles start to

“relax” to the channeling mode in skew planes [4] by means of volume capture.

However, by adjusting the crystal orientation one can stimulate the process

of channeling or volume reflection in skew a bent crystal plane, providing some

benefits w.r.t. the vertical ones. In particular, if one aligns a crystal for volume

reflection from one skew crystal plane, a reflected particle will be in optimal

conditions to be reflected by the next one, etc. This process is illustrated in

Fig. 1.2.4. What is more important, volume reflections in vertical direction will

compensate each other, amplifying each other in the horizontal one. This effect

is called multiple volume reflection in one bent crystal (MVROC) [24, 107]. It
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Figure 1.15: Multiple volume reflection in one bent crystal.

was observed experimentally for particles of both signs [23–26,53,54]. Moreover,

as it was shown experimentally [51,53,54], MVROC is a very promising source

of radiation.

For clear manifestation of MVROC one must align a bent crystal to avoid

capture under the channeling conditions. On the other hand one can align

skew crystal planes along the beam direction. Consequently, in the case of

non-capture in the channeling mode a particle may continue its motion by con-

sequent volume reflections by means of MVROC [A2, A5], which considerably

increases the deflection angle of a non-channeling particle.

Therefore, by changing the crystal alignment one can either apply pure axial

effects or amplify the planar coherent effects, considered above. Both MVROC

and channeling in skew planes will be considered in details below.

1.3 Summary

There are various coherent effects in a bent crystal, applicable for beam

steering in modern accelerators. In the planar case it is planar channeling, vol-

ume reflection, while the axial one is represented by axial channeling, stochastic

reflection, multiple volume reflection in one bent crystal as well as channeling in

skew crystal planes. One can calculate a charged particle trajectory by means

of solution of equations of motion, containing the transverse electric field, pro-

duced by crystal planes or atomic strings, and a centrifugal term due to crystal

bending.
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Incoherent scattering is responsible for particle escape or capture under the

conditions of the coherent effect. For the case of channeling these effects are

called dechanneling and rechanneling/volume capture respectively. If a particle

escapes the conditions of one coherent effect, it may be deflected by another

one, for instance volume reflection after dechanneling.

Incoherent scattering is divided onto Coulomb and nuclear. The first one can

be also divided on multiple and single scattering on screened nuclear potential

and single electrons. All the processes are defined by the cross sections and can

be treated randomly during the trajectory calculations. The realization of this

model is the topic of the next chapter.
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CHAPTER 2

CRYSTAL SIMULATION CODE

2.1 General description and the algorithm

The CRYSTAL simulation code [A1, A3] is designed to simulate various co-

herent effects of the interaction of charged particles (protons, electrons, muons

and their antiparticles) with straight or curved single crystals taking into ac-

count different types of scattering. The developed program has already made

it possible to successfully simulate [A3, A6, A7] various experiments to observe

and apply coherent effects in crystals on modern accelerators.

The program contains one-dimensional and two-dimensional models that

allow one modeling the classical trajectories of relativistic and ultrarelativis-

tic charged particles in the field of atomic planes or strings, respectively. The

specified ranges of particle energies in CRYSTAL for agreement with an ex-

periment: from 100 MeV and higher. At lower energies, quantum effects can

contribute significantly. There is no upper energy limit. The restriction on the

angles of incidence of particles w.r.t. the crystalline axes or planes is no more

than 4-5 degrees (on modulo). Otherwise, the longitudinal step becomes sub-

stantially smaller than the interatomic distance, and the one-dimensional and

two-dimensional models become inapplicable.

For the calculation of trajectories and modeling of scattering, the following

functions are used: interplanar potential, interplanar electrostatic field, nu-

clear and electron densities, minimum ionization energy of an atom. All these

functions are stored as interpolation coefficients in the input file, which allows

one-dimensional and two-dimensional models to be specified for any monocrys-

tal of any orientation without modifying the source code of the program. The

interplanar potential and its derivative functions were preliminarily calculated

by using the Doyle-Turner potential [78]. The ionization losses are calculated

by the model described in Section 1.4.2 in [62]. This calculation is performed

taking into account the average density along the entire trajectory after its

calculation.

The algorithm for simulation of motion of particles in a crystal is shown in

Fig. 2.1. For a one-dimensional model, the trajectory of a charged particle is

calculated by numerically solving the equations of motion by the fourth-order
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Figure 2.1: The CRYSTAL algorithm.

Runge-Kutta method [108, 109], (1.67) for 1D-model and (1.68) for 2D-model:
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dz2
+

U ′
ax x

pv
+

1
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= 0;

d2y

dz2
+

U ′
ax y

pv
+

1

Ry
= 0,

(2.1)

where Rx and Ry are the bending radius of a crystal in x- and in y-direction,

as defined in (1.75).

Coulomb scattering is simulated for all particles by the Monte Carlo method,

and for nuclear hadrons, in addition to this, nuclear elastic, diffractive and in-

elastic scattering is simulated by the model [110]. Coulomb scattering is mod-

eled taking into account the suppression of incoherent scattering [66] by the

model [88] and involves multiple and single scattering on atoms with allowance

for the screened cross section (for this, the functions of nuclear and electron
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density are used), and also single scattering of electrons (for this, the minimal

energy of ionization is used), as described in the previous chapter. The simu-

lated scattering angles, denoted by ϑx, ϑy in Fig. 2.1, are added to the angles

of the particle, obtained by solving the equation of motion.

The geometry of the crystal is also included in the program, namely the

horizontal bending of the crystal, the possibility of entry/exit through its lateral

surface, the influence of the miscut angle [111] and [N3], as well as a crystalline

cut, which significantly increases channeling efficiency [112, 113]. A special

procedure allows one to vary one or more parameters by specifying a table of

values for them and performing calculation for each set of parameters. Output

files include the values of horizontal and vertical coordinates and particle angles

at the entrance and exit of the crystal, as well as the efficiency of channeling,

the number of inelastic scattering events, etc.

The program also provides MPI parallelization, which allows one to perform

calculations on clusters and supercomputers.

2.2 Interpolation of the main functions and trajectory

calculation

The main functions, i.e. interplanar potential, interplanar electrostatic field,

nuclear and electron densities and minimum ionization energy of an atom, are

not very convenient for fast calculations because of the very large required

number of mathematical operations at each step. Therefore, all these functions

were interpolated by cubic splines for both 1D- and 2D-model. In particular, in

1D model spline interpolation can be expressed in the following way [108,109]:

S(x) = ai +∆xi(bi +∆xi(ci + di∆xi)), (2.2)

where i is the interpolation node number, ∆xi = x−xi, xi interpolation nodes,

ai, bi, ci and di the interpolation coefficients.

For the 2 dimensional case it will be written as

S(x, y) = gi+1,j,2(y)
∆x3

i

6hxi
− gi,j,2(y)

∆x3
i+1

6hxi
+

(gi+1,j,1(y)−
gi+1,j,2(y)

6
hx2

i )
∆xi

hxi
− (gi,j,1(y)−

gi,j,2(y)

6
hx2

i )
∆xi+1

hxi
,

(2.3)

where

gi,j,k(y) = Ci,j+1,k

∆y3j
hyj

− Ci,j,k

∆y3j+1

hyj
+ Bi,j,k

∆yj
hyj

−Ai,j,k
∆yj+1

hyj
, (2.4)
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∆xi = x−xi, ∆yi = y− yi, xi and yi the interpolation nodes, Ai,j,k, Bi,j,k, Ci,j,k

the interpolation coefficients.

All the interpolation coefficients are calculated in advance by using formulae

(1.17-1.18,1.49-1.52) from the first chapter. The summation for multiple planes

or axes is calculated according to (1.2,1.4). For the case of a particle entrance

or exit through a crystal lateral surface an additional set of interpolation co-

efficients is calculated, corresponding to the main functions near the crystal

boundary. In this case the sum for (1.2,1.4) on i starts from 0.

All the main functions are reproduced during the simulation process by

spline interpolation (2.2-2.4). The electric field is used for instance for a nu-

merical solution of equations of motion (2.1), being found at each step by the

fourth-order Runge-Kutta method.

The choice of the simulation step follows from its evaluation in the transverse

direction. It should be no more than dpl/Nsteps, where Nsteps is the number of

transverse steps necessary for the particle to pass from one edge of the channel

to the other in channeling mode with the maximum possible amplitude. Conse-

quently, the value of simulation step in the longitudinal direction is determined

by the formula:

dz = πdpl

√

2pv

U0
/Nsteps. (2.5)

For simplicity, in the algorithm, dz was not changed when the particle moved

under the channeling conditions. Only in the case of a particle escape from the

latter, dz was changed, namely decreased in inversely proportion to the angle

of the particle w.r.t. the crystal plane. In order to achieve high accuracy, Nsteps

is usually taken to be equal to 500.

2.3 Scattering routine

Coulomb scattering involves multiple scattering, described by a Gaussian

distribution, and single scattering characterizing the long non-Gaussian tails of

the distribution of scattering angles as was decribed in the previous chapter.

To simulate multiple scattering, it is sufficient to calculate its r.m.s. angle

< ϑ2
Cms > (1.44). It is calculated by integrating over the scattering angles

ϑ 6 ϑ2 of Eq. (1.36), taking into account the suppression of scattering.

ϑ2 splits multiple and single scattering [88]. The choice of this angle is not

strictly defined, since at its zero value only single scattering is actually left.

However, for small angles such scattering events can be taken into account in

multiple scattering, which considerably reduces the number of necessary com-

putations. One can calculate the probability of a single scattering by using the
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single scattering cross section σCss (1.43), giving:

PCss = σCssnNpl/axdz = 4πnNpl/axdz

(

zZe2

pv

)2(
1

ϑ2
1 + ϑ2

2

− 1

ϑ2
1 + ϑ2

max

)

, (2.6)

where nNpl/ax represents either planar or axial nuclear density depending on the

model choosen for simulations (1D or 2D). One can distinguish between single

and multiple scattering by taking Pss in the range from 0 to 1. For convenience

of modeling, the value 0.1 was used. The angle ϑ2 is expressed from (2.6). At

too low values of the nuclear density, PCss can be less than the set value for any

ϑ2, in which case multiple scattering at the current step is not modeled.

The generation of the multiple scattering angle by means of the Gaussian

distribution can be done by Monte Carlo as:

ϑ =
√

− < ϑ2
Cms > ln(1− ξ), (2.7)

where ξ is a uniform random number, generated in the interval [0,1). In order

to generate the x- and the y-components of the multiple scattering angle one

has to generate another random number ξ, namely:
{

ϑx = ϑ cos(2πξ);

ϑy = ϑ sin(2πξ).
(2.8)

Coulomb single scattering is simulated by means of the distribution (1.36)

by using one more random number ξ, with the value of the minimum angle

taken to be ϑ2, and the maximum angle ϑmax, determined by the size of the

atomic nucleus. The the x- and the y-components of the single scattering angle

can be generated according to (2.8). In addition, single scattering on electrons

is simulated. For this, the Fermi energy is estimated in dependence on the

particle coordinates in a crystal. The energy is assumed to be the minimum

energy transferred to an electron. The simplest and at the same time ruther

realistic way to estimate the Fermi energy is to calculate the average logarithm

of the interplanar or interaxial potential [70], averaged over the electron density.

Then one can generate the transfered energy by using the cross section (1.46)

and another specially generated random number ξ, and in a such way calculate

the scattering angle. The further procedure is analogous to the procedure for

simulating single scattering on an atom.

Nuclear scattering of hadrons is simulated on the basis of the model [110].

Nuclear scattering includes elastic scattering (on the whole nucleus), diffractive

(on one nucleon) and inelastic (leading to the absorption of a particle). The

r.m.s. scattering angles can be written as:
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< ϑ2
N >=

1

Bp2
, (2.9)

where B is a slope determined for each type of scattering. For example, for

protons in the case of elastic scattering, it is written as:

B = 12.85A2/3GeV −2, (2.10)

where A is the atomic number of a nucleus of crystal substance. The scattering

angles are simulated by Gaussian distribution according to equations (2.7-2.8).

A single scattering event can be generated by Monte Carlo simulation of

the scattering length of a particle by using another specially generated random

number ξ:

zsc = − ln(1− ξ)

Lsc
, (2.11)

where Lsc can be equal to the values of LCss, LCe, Lel, Ldiff or Linel, depending

on the type of single scattering considered (single Coulomb on atoms (1.44),

on single electrons (1.48), nuclear elastic, diffractive or inelastic (1.44) respec-

tively). In order for the scattering to take place, the zsc should not exceed the

modeling step dz. Since it is convenient to simulate the inelastic scattering in

the end of the crystal, one must compare zsc with the trajectory length for this

case.

2.4 Structure of program files

The program contains the following program files:
� Crystal51 MPI.f is the control program, which contains MPI proce-

dures, namely parallelizing, parameter variation, saving output files to

separate directories and initializing the random number generator and

starting the Single procedure.

� Single.f is a procedure that organizes input-output, generation of the

input particle beam and starts the simulation procedure for the trajectory

in the crystal for each particle separately. When running calculations on

a multi-core or multiprocessor machine, the total number of particles is

evenly distributed among all the processes.

� crystal sytov51ph21.f is a procedure for modeling the trajectory of

a charged particle in a crystal, including an initializing procedure that

organizes the input parameters of the crystal and particle beam and cal-

culates the quantities needed for the program, and auxiliary procedures

and functions such as one- and two-dimensional spline interpolation.
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� rnd.f is the random number generator RANMAR [30].

� Makefile is a file containing the commands for compiling and running

the program.
The program includes the following input files:
� crystal-parameters.dat is a file containing parameters for the geometry

of the crystal and the input beam.

� Impact.dat is a file containing beam particle distributions along the

horizontal and vertical coordinates and angles, as well as the distribution

type.

� si.dat is file containing the main parameters of the crystal material and

the length of the nuclear scattering of particles, by default it is silicon.

For convenience, the program allows one to use files with the name of

other elements - germanium and tungsten, in which case the files should

be named ge.dat and w.dat.

� plane-si-110.dat is a file containing the basic parameters and interpo-

lation coefficients of the basic functions for the (110) plane. For conve-

nience, there is a possibility of using similar names for other planes (111)

and (100) (in the title instead of ”110”, respectively, ”111” or ”100”) and

other materials (”ge” and ”w” instead of ”si”, by analogy with si.dat).

For the axial case, the file name specifies ”axis” instead of ”plane”. For

example, for a silicon crystal, aligned in the direction of the <111> axes,

the file will be called: axis-si-111.dat. The potentials and derived func-

tions, calculated by different models can be implemented into these files,

though the default model is the Doyle-Terner potential [78]. To success-

fully launch the program, all listed files must be in the same directory. To

avoid errors, the full path to the directory and the name of the catalog

itself should be written in the standard Latin alphabet.

2.5 Geometry of a crystal and generation of a charged

particle beam

The geometry of a crystal and the parameters of the incident beam are

completely specified in the input files crystal, namely crystal-parameters.dat

and Impact.dat. All the values for coordinates and lengths are written in cm

as well as for angles in radians. The feature of variation of parameters is

developed for parameters from the first files. For this the parameter table must

be written in separate input files line by line. The structure of the crystal-

parameters.dat file (the names of parameters are marked by italic bold) and

the name of the files for data variation (in brackets) is the following:
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� Name of the directory in which the output will be stored

(PROGRAM.dat)

� Number of particles in the input beam for modeling (NMC.dat)

� The energy of the particles in GeV (ENERGY.dat)

� Program mode (MODE.dat):

– MOD (symbols 1-3 or 4-6 in the word) is a modified Monte Carlo

method, in which particles are assigned a weight equal to 1, which

decreases as a function of the inelastic scattering probability in the

crystal, which makes it possible to calculate the fraction of inelasti-

cally lost particles with greater accuracy. If this mode is not selected,

then in the case of inelastic scattering the particle is considered to

be lost.

– INP (symbols 1-3) is the mode of reading the input beam parame-

ters from files fort.42001, fort.42002, etc. by the number of processes

to be launched in the format horizontal coordinate and angle, ver-

tical coordinate and angle (coordinates in cm, angles in radians).

Otherwise, the beam is generated by Monte Carlo.

– TR (symbols 4-5) is the mode of recording the particle trajectory in

the output file Trajectory.dat in the format: longitudinal coordinate,

transverse horizontal coordinate, horizontal angle (coordinates in cm,

angles in radians). If none of the listed modes is selected, it is enough

to write NO.

� Particle names: proton , antiproton , electron , positron , muon+,

muon- (PARTICLE.dat)

� Material of the crystal: si for silicon, ge for germanium, w for tungsten.

This determines the choice of the file si.dat and plane-... or axes-...

(see above) (MATERIAL.dat)

� Type of planes or axes; planes are indicated as (number), for example:

(110). Similarly, the axes are specified, but with dashes instead of brack-

ets, -111- instead of (111). (PLANE.dat))

� The width of the crystal (THICKNESS.dat)

� The crystal height (HEIGHT.dat)

� The length of the crystal (LENGTH.dat)

� The angle of bending of the crystal (can be negative if the crystal is bent

on the left but not on the right) (BENDING.dat)

� The horizontal coordinate of the crystal (if = 0, the beam falls to the

center of the crystal) (COORDX.dat)
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� The vertical coordinate of the crystal (if = 0, the beam falls to the center

of the crystal) (COORDY.dat)

� The average horizontal angle of beam incidence on the crystal

(BEAMX.dat)

� The average vertical angle of beam incidence on the crystal

(BEAMY.dat)

� The horizontal angular orientation of the crystal (ANGLEX.dat)

� The vertical angular orientation of the crystal (NGLEY.dat)

� The value of the miscut angle (MISCUT.dat)

� The angular divergence of the beam by default (DELTATETA.dat)

� The crystal mode with the crystalline cut [20-21]; cut when selecting it,

otherwise no-cut (CUT.dat)

� The first longitudinal coordinate of the cut (CUTZ1.dat)

� The second longitudinal coordinate of the cut (CUTZ2.dat)

Input files, containing initial parameter tables can be generated automat-

ically by using the entry in the crystal-parameters.dat file instead of the pa-

rameter value: R <space> min. value of parameter <space> max.

value of parameter <space> step. This function is enabled for all numeric

parameters in crystal-parameters.dat. If one varies several parameters, the

program will perform calculations for each combination of their values. If it

is necessary to go through parameter values in groups, then instead of R, one

needs to write R1 for each parameter, related to the group. The number of

values for each parameter in the group must match. When specifying such val-

ues manually in the corresponding files with tables of initial parameters, R1

should be written in the first line.

The structure of the Impact.dat file is the following:

� center of distribution of horizontal coordinates of the input

beam <space> width of distribution (see below) <space> type

of distribution

� center of distribution of vertical coordinates of the input beam

<space> width of distribution <space> type of distribution

� center of distribution of horizontal angles of the input beam

<space> half-width of distribution (see below) <space> type of

distribution

� center for distribution of vertical angles of the input beam

<space> half-width of distribution <space> type of distribu-

tion
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The distribution type is either uniform or Gaussian: in the file, respectively,

Uniform or Gauss . For a Gaussian distribution, the root-mean-square value

is introduced instead of the width or half-width. To include the default values,

one needs to add the word no to the beginning of the corresponding line in the

Impact.dat file. The default distribution is Gaussian.

2.6 Output Files

The output files are written to the directory whose name is written in the

first line of the crystal-parameters.dat file. Also the nested directories are

created inside a given directory in the case of using the function of variation

of the parameter values. The name of the nested directories correspond to the

current value of the parameter being variated. The level number of nested

directories is equal to the number of variated parameters.

In the created directory, the output coordinates and angles of particles are

recorded after passage through the crystal:

� x.dat is the horizontal coordinate;

� tx.dat is the horizontal angle;

� y.dat is the vertical coordinate;

� ty.dat is the horizontal angle.

Similar files are created in the Nincr01 sub-directory for input coordi-

nates and angles at the crystal entrance. The efficiency values are written

to the Eff.dat file, namely channeling efficiency; the fraction of inelastic parti-

cle losses; the absolute error of this fraction; its relative error. Also, the input

files crystal-parameters.dat and Impact.dat are copied.

2.7 Implementation of MPI Parallelization

Since in the program the trajectory of each particle is simulated indepen-

dently, the process of parallelization by using the Message Passing Interface

(MPI) is rather simple. With the help of a special function, each process re-

ceives equal parts of the particles for simulation. To do this, one only needs

to know the number of processes involved and the number of the current

process that can be received by using the procedures MPI COMM SIZE and

MPI COMM RANK respectively.

The uniqueness of each particle is ensured by the individual initialization

for each process of the random number generator, in which the process number

is the argument. Since MPI is designed for distributed memory systems, all the
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input data (interpolation coefficients of the main functions, etc.) are loaded

into the RAM separately for each process. In particular the first process reads

all the input data and then broadcasts these data to the other processes by

using the MPI BCAST procedure.

The main limitation of linear growth is the amount of computation. How-

ever, since it is done only once at the start of the program run, it doesn’t

contribute considerably, if the amount of calculations is large enough to achieve

optimal computing performance. Moreover, since simulations do not practi-

cally require interactions between different processes, the productivity indeed

increases almost linearly with the increase of their number. Data exchange is

performed only at the end of the calculations by using the MPI Reduce proce-

dure, which calculates the channeling efficiency, the fraction of inelastic losses,

and other data that are written to the Eff.dat file. Since it concerns only few

numbers, this practically has no effect on performance.

2.8 System requirements, program compilation and

launch

The CRYSTAL simulation code is written in Fortran language and does not

require any libraries other than MPI. The program is debugged to run under the

Linux operating system with the installed compilers gfortran (GNU Fortran)

or ifort (Intel Fortran) and mpif77 or mpif90 (either OpenMPI or IntelMPI).

Compilation and startup is performed using: ./Makefile. The number of pro-

cesses to run is specified in the Makefile: mpirun -np number of processes. To

achieve the optimal counting speed, it must correspond to the number of logical

cores. The amount of required RAM does not exceed 400 MB per process. The

program can also be used under the Windows operating system, for example

when PGIFortran and OpenMPI are installed.

The program was also debugged and run on CINECA supercomputers

(Bologna, Italy), Fermi, Galileo and Marconi. The maximal number of cores,

used simutaneously was 2304 on CPUs Intel Xeon E5-2697 v4 (Broadwell) at

2.30 GHz at Marconi-A1. The program, compiled with Intel compiler, was

nearly twice faster than with the GNU one on both Marconi and Galileo.

2.9 Summary

The CRYSTAL simulation code is developed, allowing one simulations of

various coherent effects of charged particles interaction with straight and curved
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crystals. The program includes one-dimensional and two-dimensional models,

providing the possibility to calculate particle trajectories in the averaged field of

atomic planes and strings, respectively. The program uses Doyle-Turner model

of atomic potential, though any potential can be implemented without code

modifications. In addition incoherent Coulomb scattering is simulated, as well

as various types of nuclear scattering - elastic, diffractive and inelastic.

For the optimization problem solution, the program includes a procedure for

varying the initial parameters, in which the code is able to perform a complete

simulation cycle for each combination of parameters. To increase computing

performance, MPI is implemented in the program for high-performance com-

puting on supercomputers and clusters. Parallelization can be done due to

the independent calculations of different particle trajectories. As a result each

process carries out simulation for its set of particles.

The main advantage of the CRYSTAL program lies in ab-initio simulations

of previously undefined effects. Therefore the CRYSTAL simulation code allows

one to predict new, previously unknown effects.
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CHAPTER 3

NEW METHODS OF BEAM DEFLECTION AND

OPTIMIZATION

Crystalline collimators can potentially considerably improve the cleaning

performance of the presently used collimator systems using amorphous colli-

mators. A crystal-based collimation scheme which relies on the channeling

particle deflection in bent crystals has been proposed and extensively studied

both theoretically and experimentally. However, since the efficiency of particle

capture into the channeling regime does not exceed ninety percent, this colli-

mation scheme partly suffers from the same leakage problems as the schemes

using amorphous collimators.

To improve further the cleaning efficiency of the crystal-based collimation

system to meet the requirements of the Future Circular Collider, a double

crystal-based collimation scheme is suggested, to which the second crystal is

introduced to enhance the deflection of the particles escaping the capture to

the channeling regime in its first crystal. The application of the effect of mul-

tiple volume reflection in one bent crystal and of the same in a sequence of

crystals is simulated and compared for different crystal numbers and materi-

als at the energy of 50 TeV. To optimize these effects, the analytical model of

single and multiple volume reflection in one and a sequence of bent crystals is

suggested. Being invariant w.r.t. the particle energy this model is applicable

for any high-energy accelerator.

To enhance also the efficiency of use of the first crystal of the suggested

double crystal-based scheme, it is proposed to apply the following: the method

of increase of the probability of particle capture into the channeling regime at

the first crystal passage by means of fabrication of a crystal cut and the method

of the amplification of non-channeled particle deflection through the multiple

volume reflection in one bent crystal, accompanying the particle channeling by

a skew plane. Both of these methods are simulated for the 50 TeV FCC energy.

3.1 A possible setup of a crystal-based collimation

scheme at the FCC

The collimation system is of key importance for stable operation of modern

high energy storage rings and colliders, for instance for the LHC and the future

HL-LHC project [114, 115]. Moreover, ”the operation and physics goals of re-
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Figure 3.1: Double crystal-based collimation system. Beam trajectories for

different deflection angles by the crystal 1 are simulated in the betatron cleaning

area of the FCC [119], taking into account only betatron oscillations. The crystal

1, crystal 2 and the absorbers are placed at 7.2 σ, 9 σ and 12.6 σ respectively. The

particles, passed through the crystal 2, are assumed to be deflected by -5 µrad for

solid lines and 0 µrad for the dashed ones. Bold curves illustrate the trajectories

of non-deflected particle, of channeled particles and particles deflected by 1 and 3

µrad, being the typical angles of particle deflection by volume reflection (VR) and

multiple volume reflection in one bent crystal (MVROC) respectively.

cent superconducting, high-energy hadron colliders, such as the Tevatron, the

Relativistic Heavy-Ion Collider (RHIC), and the Large Hadron Collider (LHC),

could not be fulfilled without adequate beam collimation” [116]. The small-

angle scattering in collimators is used to induce a steady betatron amplitude

growth resulting in particle collisions with the target collimators (absorbers)

before they reach the apertures of superconducting magnets. Thick amorphous

collimators are used at the LHC, RHIC and SPS at present. The efficiency of

any collimation scheme is limited by the leakage to sensitive equipment. Since

the uncorrelated Coulomb scattering in the amorphous collimators is charac-

terized by the small average scattering angles, the leakage of the collimation

schemes with amorphous collimators is determined by both the multiple par-

ticle passages through the latter and the small impact parameters of particle

collisions with the target collimators (absorbers).

Crystal collimators can be used to decrease the leakage of the present colli-

mation systems [116,117]. The point is that a bent crystal can deflect channel-

ing particles by the angles large enough to hit target collimators immediately

and with a large impact parameter. Such a collimator scheme, using planar
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channeling in bent crystals, proposed in [118], has been widely explored in

experiments [38–49].

However, this collimation approach also suffers from the leakage. The latter

is mainly induced by more than ten percent of the particles inevitably escaping

the capture to the channeling regime at their first passage through the crystal

collimator. As with the amorphous collimators, many of these particles reach

target collimators by means of volume reflection or Coulomb scattering only

after a number of passages through the crystal collimator having small impact

parameters. That is why further possibilities to improve the efficiency of the

crystal assisted collimation system still remains.

Therefore, a new double crystal-based collimation system is suggested, as

shown in Fig. 3.1. This layout represents the FCC betatron cleaning insertion

with beta-functions and absorber transverse positions (12.6 σ) taken from [119].

In the trajectories simulated only betatron oscillations were taken into account,

while the synchrotron ones were neglected because of too low values of the

dispersion functions.

The bent crystal 1 is placed at 7.2 σ, i.e. at the transverse position of

primary collimators [119], deflecting most of particles into the absorber in the

channeling mode. The second crystal, placed at ∼ 9 σ, plays role of the sec-

ondary collimator intercepting particles, volume reflected in the crystal 1, and

deflecting them into the absorber.

The collimation system proposed [A5] demonstrates the following advan-

tages.

1) The impact parameters of particles at the absorbers are large enough to

prevent the leakage at the absorber boundary.

2) Close to 100 % of halo particles will be intercepted by only one passage

through the betatron cleaning insertion.

Different coherent effects, being promising for this application in both bent

crystals, are proposed. In particular, for the second crystal we suggest the

several-fold increase of the typical angle of scattering and volume reflection in

the crystal collimator by the effect of multiple volume reflection in one bent

crystal (MVROC) [24, 107]. A good alternative to MVROC can be volume

reflection in a sequence of crystals [120]. The main advantage of both effects

is large angular acceptance to deflect coherently almost all the particles pass-

ing through the crystal and large enough deflection angle θXdef to deflect the

particles into the absorber by few or even only one crystal passage.

To amplify the deflection angle even more, it is proposed to use the ad-

vantages of both of these effects by using of MVROC in a sequence of crys-

tals. Moreover MVROC in crystals of different materials is studied: silicon,
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Figure 3.2: Interplanar potential in (110) Si crystal.

germanium and tungsten. The parameters of the crystal as well as its align-

ment for each effect are optimized both theoretically and by means of Monte

Carlo simulations on example of 50 TeV protons of Future Circular Collider

(FCC) [121–124]. These effects are compared by the peak deflection angle.

The second approach is the application of planar channeling in skew crystal

planes [A2, A5] instead of the vertical ones. Its main advantage is deflection

of non-channeled particles by means of MVROC instead of volume reflection

considerably amplifying the deflection angle. The angular acceptance and, con-

sequently, the channeling efficiency also increases. In addition, it is suggested

to considerably increase the channeling efficiency by application of the crystal

cut [112, 113].

Combination of these two approaches can lead to the further collimation

optimization. Each of suggested coherent effects has a potential to considerably

increase the efficiency of the crystal-based collimation system.

3.2 Volume reflection in a sequence of bent crystals

Volume reflection at optimal conditions provides a deflection angle α of

approximately α ≈ 1.5θL [99]. More exact calculations of the ratio of the volume

reflection angle to the Lindhard angle (for straight crystal) can be provided by

formula from [99,100] and rewritten, taking into account the critical radius Rcr:
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dx. (3.1)

Here η is the ratio of the bending radius R to its critical value Rcr, U(x)

hereinafter will be the interplanar potential function of a straight crystal instead

of Upl(x) (since the axial potential will not be used for theoretical calculations

anymore and there is no need to differ it from the interplanar one), E0

η x rep-

resents centrifugal fraction of interplanar potential, ǫ is the transverse energy,

x0 is the initial coordinate of particle motion and xref is the volume reflection

point (see Fig. 3.2). The dependence on transverse energy can be reduced by its

averaging on over-barrier values, the distribution of which can be approximately

considered as uniform [99, 100]:

<
α

θL
>=

η

E0d0

U0+
E0

η d0
∫

U0

α

θL
dǫ, (3.2)

where d0 is the interplanar distance. It should be noted that multiple scattering

have not been considered yet, because the goal is to estimate optimal parameters

for Monte Carlo simulations.

Thus, the obtained formulae (3.1-3.2) [A5, A7] depend only on interplanar

potential and bending radius. They are very useful, because they do not depend
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Figure 3.4: Volume reflection in a sequence of bent crystals.

on particle energy and therefore, can be verified with experiments already done

as well as can be applied at higher energy.

A plot representing the dependence by Eqs. (3.1-3.2) for (110) planes is

shown in Fig. 3.3. Indeed, the maximal deflection angle of 1.53θL is reached at

the bending radius

R ≈ 100Rcr. (3.3)

However, in reality R = lcr/ϕ is limited by the bending angle ϕ, to be at least

several times higher than θL, and by the crystal length lcr, always limited by

experimental reasons. These constraints are especially important when consid-

ering volume reflections in a sequence of bent crystals (see Fig. 3.4).

All of the crystals in a sequence as well as their orientation are considered

to be the same. Therefore, the sum of deflection angles at each crystal from Eq.

(3.2) should be less than the bending angle. Moreover, to avoid the capture

into the channeling mode, the angle of alignment of any crystal in a sequence

should be at least on 1.5θL less than the current beam direction. This can be

transformed into the condition:

n <
α

θL
> (η) = ϕ− 3θL, (3.4)

where n is a number of bent crystals in a sequence, volume reflection angle

is fixed w.r.t. the interplanar potential. We fix also the total length of the

sequence Lseq, because, for instance, the crystal-based collimation is optimized

taking into account constraints on inelastic nuclear scattering rate that depends

on the total length of the crystal crossed by the beam [94]. Therefore the

bending angle can be calculated by the equation:

ϕ = Lseq/nηRcr, (3.5)

transforming the condition (3.4) into:

n <
α

θL
> (η) = Lseq/nηRcr − 3θL, (3.6)

and expressing η, one can find an optimal bending radius as a function of n.

Unfortunately, Eq. (3.6) is not linear, but can be simply solved numerically.
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Figure 3.5: Angular distribution behind the crystal for volume reflection of 50

TeV protons in a sequence of (110) bent silicon crystals. Bending radius is

calculated according to (3.6).

This equation was applied to calculate the optimal parameters of a sequence

of silicon crystals for different length values: 2.5 cm, 5 cm, 7.5 cm and 10 cm

and for different number of crystals. These parameters were used for Monte

Carlo simulations with application of the CRYSTAL simulation code [A1, A3].

The simulation results for 50 TeV protons deflection with a statistics of 200000

particles are shown in Fig. 3.5. Hereinafter the initial angular divergence is

taken at 0.23 µrad which is 4 times lower than θL at 50 TeV and more than an

order lower than the angular acceptance of volume reflection and MVROC.

The results confirmed the existence of the optimal number of crystals de-

pending on the sequence length. If the number of crystals is too low, the

deflection angle is also low. However, for too high crystal number the peak

deflection angle decreases, and the divergence of the deflected beam becomes

too wide. This is mainly explained by a sharp decrease of deflection angle for

small R (see Fig. 3.3) and by increase of over-barrier transverse energy range

(see Eq. (3.2) and Fig. 3.2), spreading deflection angles stronger.

Both the peak deflection angle and the optimal number of crystals increases

with the rise of Lseq. At Lseq =10 cm the peak deflection angle achieves 12 µrad

for 14 crystals in a sequence. However, depending on the experimental set up

one can reduce the number of the crystals to decrease the spread of deflected

beam.
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Figure 3.6: Multiple volume reflection in one bent crystal.

3.3 Multiple volume reflection in one and in a se-

quence of bent crystals

In order to obtain the deflection on a higher angle one can apply the electric

field of atomic strings, being several times stronger than that of planes.

One of the coherent effects, exploiting axial electric fields, is the multiple

volume reflection in one bent crystal. For <111> silicon crystal axes MVROC

deflection angle for protons is 5 times higher than the volume reflection one

[24, 107], which was confirmed experimentally [23, 25, 26]. The idea of multiple

volume reflection in one bent crystal is volume reflections from skew crystal

planes as shown in Fig. 3.6. While in vertical direction these reflections almost

compensate each other in the horizontal one they will be summarized.

Indeed, reflections from skew planes result in deflection by the angles θX =

−θR sinαpl and θY = θR cosαpl in the horizontal and vertical coordinate planes,

respectively. αpl is the inclination angle of skew plane, θR the reflection angle

by a plane bent with the radius R/ sinαpl.

Since sinαpl > 0 for any 0 < αpl < π, all the horizontal deflection angles

θX will be summarized. On the contrary, since cos(π − αpl) = − cosαpl, the

vertical reflections from symmetric skew planes with inclination angles αpl and

π − αpl compensate each other.

The optimal conditions of MVROC [A5] are mainly defined by horizontal

θxcr and vertical θycr angles of crystal alignment and bending angle ϕ and crystal
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Figure 3.7: Angular distribution on horizontal (left) and both horizontal and

vertical (right) angles behind the bent silicon crystal for MVROC of 7 TeV

protons. The crystal length is lcr = 4mm, the bending angle θb = 60µrad, the

angular alignment θxcr = −30µrad, θycr = −12µrad w.r.t. <111> axes. For

comparison a single volume reflection from (110) plane of the same crystal is also

presented in left Fig.

length lcr. The first condition is that both angles of crystal alignment should

be at least 3-4 times higher on module than the axial critical angle [4] (θycr ≈
4θLax ≈ 8µrad at 50 TeV) to avoid axial channeling.

The second condition establishes the crystal orientation for the beam to

be volume reflected by the strongest skew plane ((110) for <111> axes). The

inclination angle of the plane should exceed the angle of the plane of particles

incidence to the crystal:

αpl > arctan(θycr/θxcr) (3.7)

for a plane to reflect particles [24, 107]. For <111> axes it will be transformed

into condition:

θxcr < θycr
√
3, (3.8)

in which the sign > is changed to < because angles of crystal alignment are

negative. To avoid capture into the channeling mode θxcr should be smaller

at least on 1-1.5 θLax. For instance for the energy of 50 TeV one can choose

θxcr = −17.5µrad and θycr = −8µrad.

The third condition determines the bending angle for the beam to be re-

flected by all main crystal planes as the symmetrical pairs. By the vertical

symmetry of the crystal lattice this angle should be twice larger on module

than the horizontal incidence angle:

ϕ = −2θxcr, (3.9)
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Figure 3.8: Angular distribution behind the crystal for MVROC of 50 TeV

protons in one and in a sequence of <111> bent silicon crystals. The alignment

and geometry of crystals are calculated according to (3.8-3.13).

giving in our case ϕ = 35µrad.

The optimal length of the crystal can be obtained from the condition of opti-

mal R for single volume reflection (3.3). However, it is limited by experimental

conditions, therefore should be as high as possible.

An example of deflection angle distribution for the MVROC effect is pre-

sented in Fig. 3.7 at the LHC energy of 7 TeV as well as compared with single

volume reflection from (110) plane. This picture confirms the superiority of

MVROC w.r.t. VR as well as compensation of vertical deflection angles by

different skew planes.

For the amplification of the deflection angle it is proposed to apply MVROC

in a sequence of crystals similarly to the technique from the previous section.

In a such setup it is very important to avoid capture in the channeling mode

by skew crystal planes. Thereby, the condition (3.8) should be fulfilled for all

the crystals in the sequence. Therefore, the angle of crystal alignment w.r.t.

deflected beam by all the crystals except the last one θxf should also fulfill this

condition:

θxf < θycr
√
3. (3.10)

The difference between θxf and θxcr is equal to the deflection angle by all the

crystals except the last one θxf −θxcr = (n−1)αMVROC . The angle of deflection

by means of MVROC αMVROC can be estimated as 5 angles of single volume
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Figure 3.9: Comparison of angular distribution behind the crystal for volume

reflection and MVROC of 50 TeV protons in one and a sequence of bent silicon

crystals and MVROC in bent germanium and tungsten crystals. The length is 10

cm of the silicon crystal or crystal sequence, 5.4 cm of the germanium crystal and

1.9 cm of the tungsten crystal.

reflection [23, 24, 107], calculated above by Eqs. (3.1-3.2), giving:

θxf − θxcr = 5(n− 1)θL <
α

θL
> (η). (3.11)

The angle θxcr can be defined by the condition (3.9). However, it is different

for any crystal because of deflections. We suggest to use the average value of

the crystal alignment for the first and the last crystal in a sequence
θxcr+θxf

2

transforming the condition (3.9) into:

ϕ = −θxcr − θxf . (3.12)

Expressing ϕ from Eq. (3.5), θxcr from Eq. (3.12) and substituting it into

(3.11), one obtains an equation for the variable η for MVROC analogically to

Eq. (3.6):

2θxf + Lseq/nηRcr = 5(n− 1)θL <
α

θL
> (η). (3.13)

The angles θxf and θycr are calculated by the same way as for the case of

a single crystal. However, we lowed them a bit: θxf = −14µrad and θycr =

−7µrad to decrease the bending angle and to increase the deflection angle.

Analogical simulations to that, shown in Fig. 3.5, were conducted for

MVROC both in a single crystal and in a sequence of silicon crystals with

application of CRYSTAL simulation code [A1, A3] with the statistics of 200000

particles. The results are presented in Fig. 3.8. The initial parameters were

optimized according to (3.8-3.13).
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Figure 3.10: Rotation of crystal lattice for application of channeling in skew

planes. In both case crystal is bent horizontally. Red line indicates the plane

(110) used for channeling.

One can conclude that the optimal number of crystals varies from 2 to 3-4

for the sequence length from 2.5 cm to 10 cm. This is considerably less than the

number of the crystals for single volume reflection case. Nevertheless, MVROC

in a sequence of crystals provides considerably higher deflection angle than

single volume reflection, 16.5 µrad and 12 µrad respectively for Lseq = 10cm.

The comparison of these cases and the case of MVROC only in one crystal (the

peak angle is 8.3 µrad) is shown in Fig. 3.9.

However, it is important to underline, that in some cases there is an increase

of particle fraction deflected by a low angle, which one can notice in both

Figs. 3.8-3.9. This is explained by reduction of fraction entering in the next

crystal after deflection by the previous one, being at still optimal conditions for

MVROC. Such particles can be, for instance captured by skew crystal planes

and deflected in opposite direction. This effect must be also taking into account

during parameters optimization for a concrete collimation system.

The problem of deflected fraction on a small angle exists for any coherent

effect. This is one of the main problems of collimation inefficiency and must be

critically compared during the coherent effect choice and optimization.

In this figure simulations of MVROC in crystals of other materials are also

presented, in particular in germanium and tungsten crystals. The atomic strings

in crystals of heavy elements possess higher field deflecting particles on higher

angles. However, the length of such crystals should be reduced in comparison

with silicon to reach the same probability of nuclear inelastic interactions. Any-

way they provide larger deflection angles w.r.t. silicon crystals. In particular,

the peak deflection angle for 50 TeV protons reaches 23 µrad for tungsten crys-

tal. It 1.4 times exceeds the angle of MVROC in a sequence of Si crystals and

twice exceeds the deflection angle of volume reflection in a sequence. Moreover,
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Figure 3.11: The deflection angle distribution behind a bent crystal of 5 cm long

for planar channeling in vertical and skew (110) crystal planes of 50 TeV protons.

The bending angle it 40 µrad and 53.3 µrad for vertical and skew crystal planes

respectively. The parameters of crystal cut are calculated according to [112].

Figure 3.12: A bent crystal with a cut.

potentially the technique MVROC in a sequence can be applied also for tung-

sten crystals which can double the deflection angle. In addition, it produces

one of the lowest fraction of particles deflected at small angles. Thus, all of this

can be applied for the crystal-based collimation system.

3.4 Channeling in skew crystal planes and a crystal

with a cut

There is a possibility to combine the advantages of channeling and MVROC

[A2, A5]. For this we suggest to align the crystal for channeling in skew crystal

planes instead to avoid it. In other words, in this case the inequality (3.8) be-

comes equality, changing the optimal crystal orientation only in x-plane. How-

ever, the (110) skew plane with a αpl = 30◦ is not very useful because provides

too high angle in vertical plane and too low in the horizontal one. To double

the latter one can rotate the crystal lattice on 30◦ as shown in Fig. 3.10. The

condition (3.8) will be rewritten as:
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Figure 3.13: Phase space in different points of the crystal (see Fig. 3.13), 1: z = 0;

2: z = 0.01lcr; 3: z = lcr; 4: z = z1; 5: z = z2; 6: z = z2 + 0.01lcr; 7: z = lcr; 1–3 without

the cut, 4–7 with the cut.

θxcr = θycr/ tanαpl = θycr/
√
3. (3.14)

To reach the same deflection angle as for channeling in vertical planes, one

should bend the crystal stronger 1/ sin2 αpl times. However, the channeling

efficiency will not decrease. Moreover, channeling in skew crystal planes pro-

vides higher angular acceptance increasing the channeling efficiency. This is

confirmed by simulations (with CRYSTAL simulation code [A1, A3] with a

statistics of 106 particles, presented in Fig. 3.11. The efficiency of channeling

in skew crystal planes reaches 80.5%, while for vertical planes it is 79%.

However, the main advantage of channeling in skew crystal planes is de-

flection of non-channeled particles by means of MVROC instead of volume

reflection. MVROC deflects particles at the angle of 3.3 µrad which is 5 times

stronger than volume reflection. This is very important for the crystal-based

collimation system, because small deflection angle causes more additional pas-

sages of particles through the crystal and, consequently, increases the inelastic

nuclear scattering rate. In opposite, the angles of MVROC are high enough to

redirect almost all non-channeled particles onto the crystal 2 as shown in Fig.

3.1.
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There is a possibility to increase the channeling efficiency in both cases by

means of a narrow plane cut [112,113] see Fig. 3.12. To avoid the dechanneling

for most particles it is necessary to prevent the particles approach to the high

nuclear density regions. It can be achieved by means of a considerable transverse

energy decrease.

If one makes a crystal cut it will allow to violate the transverse energy

conservation by braking the longitudinal invariance of the planar potential. In

other words, a particle will lose a part of its transverse energy by entering the

cut. Then if one chooses the cut thickness correctly, a particle will get less

transverse energy after the cut passage, than it has lost.

Involving of most of particles in this process is determined by similarity

of phases in the channeling mode at the crystal entrance. Therefore, one can

focus synphasely particles in the cut to the center of the channel. An example is

shown in Fig. 3.13 in the phase diagrams at the different longitudinal positions

in a crystal both with and without the cut. The positions inside the crystal

are indicated in Fig. 3.12. One can observe “beam squeezing” during and after

passage of the cut. Consequently the particles will move far from crystal planes,

which considerably decreases the probability of dechanneling.

Unfortunately, it works efficiently only for the beam angular divergence less

than a quarter of the θL and requires a very exact crystal alignment of the same

order. Anyway, in the current case (see Fig. 3.11) it allows one to increase the

channeling efficiency up to 87.5% for usual planar channeling and up to 89%

for channeling in skew planes.

3.5 Double crystal-based collimation system

The main function of the collimation system as well as of coherent effects

proposed is to intercept as more particles as possible during only one pas-

sage through betatron cleaning insertion. Therefore, a considerable decrease

of non-intercepted particles fraction w.r.t. the standart (single) crystal-based

collimation scheme will testify an advantage of the new collimation scheme.

In order to verify this approach the crystal-based collimation scheme de-

scribed in Fig. 3.1 was used [A5]. For simulations four variants of collimation

scheme were chosen:

1) single collimation scheme with the first crystal, bent along (110) vertical

planes, and with an absorber at 12.6 σ instead of the second crystal;

2) the same with the first crystal with a cut;

3) double crystal-based collimation scheme with the first crystal, aligned for

channeling along (110) skew crystal planes, formed by <111> axes, and the
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Figure 3.14: Beam phase space at the first crystal entrance.

second one, designed for the MVROC effect;

4) the combination of 2) and 3).

The parameters of the first crystal are the same as in simulations, presented

in Fig. 3.11, i.e. a 5 cm silicon crystal, with the bending angle of 40 µrad

for vertical and 53.3 µrad for skew (110) crystal planes, ideally aligned for the

channeling mode. The second crystal is the same as used in simulations, shown

in Fig. 3.9, namely a 10 cm silicon crystal, with the bending angle of 35 µrad.

The beam distribution at the first crystal entrance, generated using the

diffusion model [N3], is shown in Fig. 3.14. The angular divergence, being

approximately 0.04 µrad, is considerably lower than the Lindhard angle. The

Future Circular Collider parameters [119,121–125] were used for all our simula-

tions. The simulations were carried out by CRYSTAL simulation code [A1, A3]

with a statistics of 106 particles in each case, taking into account both betatron

and synchrotron oscillations. The absorbers are assumed to intercept all the

incident particles.

The beam phase space was generated at the longitudinal positions of the

first absorber/second crystal and the second absorber for all the variants of

collimation schemes, as shown in Figs. 3.15-3.16. In the latters one can also

easily distinguish the coherent effects deflecting the particles. In order to de-

mostrate the amount of particles, intercepted by the absorber, all phase spaces

were normalized to the total number of particles, passed through the cleaning

insertion Ntot.
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Figure 3.15: Beam phase space, normalized to the total number of particles,

passed through the cleaning insertion, at the position of the first (left) and the

second (right) absorber for single crystal-based collimation system. The Si crystal

the same as in Fig. 3.11, aligned for planar channeling in (110) vertical crystal

planes without cut (top) and with cut (bottom). The crystal and the absorbers

are placed at 7.2 and 12.6 σ, respectively.

The crystal with the cut, providing considerably higher channeling efficiency,

demostrates considerable reduction of particles, non-intercepted by the betatron

cleaning insertion, namely from 9.6% (without the cut) down to 0.5% (with the

cut). One can easily observe this result from the scale in the right column of

Fig. 3.15 decreased on an order of magnitude for the crystal with the cut.

The double crystal-based collimation scheme also demonstrates a consider-

able decrease of non-intercepted beam fraction, namely down to 1.3% (see Fig.

3.16). Moreover, since the deflection angle of non-channeled particles becomes

considerably higher in the first crystal due to MVROC effect, channeling in

skew planes also enhances the efficiency of the single crystal-based collimation

scheme. Additionally, the application of the cut in the first crystal of the double
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Figure 3.16: Beam phase space, normalized to the total number of particles,

passed through the cleaning insertion, at the position of the first (left) and the

second (right) absorber for double crystal-based collimation system. The first Si

crystal the same as in Fig. 3.11, aligned for planar channeling in skew (110)

crystal planes, formed by <111> axes, without the cut (top) and with the cut

(bottom). The second Si crystal is the same as in Fig. 3.9, aligned for MVROC.

The first and second crystal are placed at 7.2 and 9 σ, respectively, as well as the

absorbers are placed at 12.6 σ.
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collimation system reduces the non-intercepted fraction on one more order of

magnitude, down to 0.1%.

Moreover, the impact parameters of particle incidence to absorbers are high

enough to prevent particle leakage at the absorber boundaries. Therefore, the

absorber length can be chosen high enough to intercept all the particles. For

instance, for 1m long tungsten absorber the leakage, caused by non-absorbtion,

is ∼ 4 · 10−5, being ∼ 2 · 10−9 for 2m of tungsten, calculated using nuclear

interaction length [94].

Therefore, the double crystal-based collimation scheme as well as coherent

effects proposed allow one to intercept approximately 99 % of particles by only

one passage through the betatron cleaning insertion. The application of the

crystal cut in the double crystal-based collimation scheme increases this number

up to 99.9%.

3.6 Conclusions

The double crystal-based collimation system, combined with the layout of

the betatron cleaning insertion of the Future Circular Collider [119], has been

suggested, based on application of the second bent crystal to amplify the de-

flection angle of non-channeled particles and to reduce, therefore, the leakage

to sensitive equipment. The effects of multiple volume reflection in one bent

crystal, volume reflection in a crystal sequence as well as MVROC in a crystal

sequence have been proposed for the second crystal. Though they also produce

a fraction deflected on small angles, this fraction is considerably smaller, than

that of the first crystal. Nevertheless, it must be also taking into account for a

concrete collimation setup.

A theoretical model of optimization of crystal geometry and alignment has

been proposed. It is mainly based on estimation of the dependence of the ratio

of the volume reflection angle to the Lindhard angle on the ratio of the bending

radius to its critical value, being independent on particle energy.

By this model the parameters of a bent crystal sequence were optimized for

both volume reflection and MVROC at a fixed crystal number and length of the

sequence. Monte Carlo simulations conducted for various lengths and crystal

numbers allow one to choose the optimal crystal number for each length as well

as to compare the peak deflection angle of volume reflection and MVROC.

Volume reflection in a silicon crystal sequence provides higher deflection

angle than MVROC (12 µrad and 8.3 µrad at 10 cm of the length at the FCC

energy of 50 TeV). However, MVROC in a silicon crystal sequence increases

this angle up to 16 µrad. Additionally, it requires 3-4 crystals, while for volume
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reflection 13 crystals in a sequence are necessary at the given length. However,

MVROC in heavy crystals allows one to reach deflection angles even higher, in

particular 23 µrad for the tungsten crystal.

For the first crystal in the double crystal-based collimation system chan-

neling in skew planes have been suggested. On the one hand it five times

increases the deflection angle of non-channeled particles by means of applica-

tion of MVROC instead of volume reflection. On the other hand it increases

the angular acceptance and, therefore, the channeling efficiency, in particular

from 79% up to 80.5% in the case simulated. In addition, the application of a

crystal cut has been suggested allowing one to increase the channeling efficiency

from 79% and 80.5% up to 87.5% and 89%.

The double crystal-based collimation system as well as all the effects of parti-

cle deflection by a bent crystal listed above allow one to intercept approximately

99 % of particles by only one passage through the betatron cleaning insertion at

the FCC. The application of the crystal cut increases the intercepted fraction up

to 99.9%. Moreover, high impact parameters of particle incidence to absorbers

prevent leakage at the absorber boundaries. Therefore the collimation schemes

proposed are potentially applicable at high-energy accelerators and colliders, in

particular the Future Circular Collider.
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CHAPTER 4

STEERING OF 855 MEV ELECTRONS BY SI AND

GE BENT CRYSTALS

4.1 Introduction

Over the years, positive particle beam steering has been well investigated

in a wide range of energies, from few MeV up to the recent result at LHC with

6.5 TeV protons. Conversely, the negatively charged particle case has been

poorly investigated and only recently, thanks to the realization of very short

bent Si crystals, it has become possible to steer negatively charged particles

beams [10,14,19,27,29–31,51–53,55]. However, the possibility to steer electron

beams is promising for applications in electron-positron collider collimation

systems [53, 126–129] as well as innovative high-intensity X- or γ-radiation

sources [51–53, 55, 56].

Usually, silicon is selected as prime material for the fabrication of bent crys-

tals due to its high-quality crystalline lattice and low cost. Nevertheless, other

materials, like germanium, which provides a higher atomic number, Z, than

silicon and can be also realized with a similar perfection, deserve investigation.

Indeed, since a Ge crystal provides a stronger potential, one expects an increase

in the angular acceptance for channeling and an enhancement of e.m. radiation

emission. Currently, a few channeling experiments have been performed with

bent Ge, only with positively charged particles and only in the hundreds GeV

energy range [15–18], while with electrons and at lower energies there are no

data in literature due to the technical difficulties of fabrication of an ultra-short

bent Ge crystal.

Only recently an investigation on sub-GeV electron steering by both sili-

con and germanium bent crystals under channeling and VR has been carried

out [A7]. With the aim of determining the different behavior of these effects

vs. the atomic number Z, two 15 µm Si and Ge crystals, bent along the (111)

planes, were selected and an experiment was performed at the Mainz Mikrotron

(MAMI) with 855 MeV electrons. The dependence of the channeling efficiency

and of the dechanneling length, which is the main parameter for planar chan-

neling, on the crystal curvature has been also investigated for the first time

with electrons and absolutely for the first time with a germanium crystal.
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Figure 4.1: Interplanar potential of (111) Si and Ge crystals for maximal bending

radii (4.76 cm and 1.83 cm respectively) used in the experiments.

4.2 Channeling, dechanneling and VR of sub-GeV

electrons

Channeling proved to be an efficient way to steer positive particle beams,

achieving deflection efficiencies larger than 80 %. On the other hand, the maxi-

mal deflection efficiency for electrons recorded in the literature slightly exceeds

20 % [29] and is about 30 % for negative pions [28]. The main source of ineffi-

ciency is dechanneling, which consists in particles escaping from the channeling

mode caused by Coulomb scattering on atoms [62,63,98]. The main pecularity

of channeling of electrons at sub-GeV energy is rather large angle of multiple

scattering, being comparable with the Lindhard angle even for short crystals,

i.e. of several channeling oscillation lengths. For 855 MeV electrons at MAMI

channeled in the (111) planes one obtains the following values of the Lindhard

angle: θL,Si = 232 µrad and θL,Ge = 274 µrad, for Si and Ge, respectively.

As was mentioned in previous chapters, the process of dechanneling is deter-

mined by the dechanneling length, which is the mean free path of a channeled

particle before its transverse energy becomes larger than the potential barrier,

thus escaping from the channeling condition (CH in Fig. 4.1, representing in-

terplanar potential in bent silicon and germanium crystals for experimental

conditions, considered below). Electron dechanneling lenght has already been

experimentally measured with Si straight [34–36] and bent [14,29–31] crystals.

In contrast to positrons, electrons dechannel faster [14,29–31,62,63,98]. Indeed,

negatively charged channeled particles oscillate around atomic planes, thereby

being more subject to the strong scattering with lattice nuclei.

The dechanneling length Ldech is usually defined [62] according to the de-

pendence of the channeling fraction population fch on the penetration depth z

(compare (1.58,1.73)). As was mentioned in the first chapted negatively charged
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particles cross the crystal planes, being in the channel center. Consequently nu-

clear dechanneling plays the main role for all the negative particles, not only

with large amplitude as for the positive once. Therefore, it is enough to consider

only one exponent from (1.73):

fch = A0 exp(−z/Ldech), (4.1)

where A0 is the normalizing factor.

Both the dechanneling lenght and exponential channeling fraction decay

were introduced by Kumakhov to describe the dechanneling process induced

by electron scattering of non relativistic ions. This approach is well grounded

for positively charged particles [62], while even the recent inclusion of nuclear

scattering [98], which is dominant for the dechanneling of negative particles,

failed to extend quantitatively the same approach to this second case. Despite

all this, the usage of the dechanneling length is justified by the practical use

as a qualitative characteristical lenght for channeling, which depends on the

crystalline material, thichkness and bending radius. Thereby, extrapolating

Ldech from experimental results is of interest for channeling application.

The main diffuculty on the theoretical description of electron dechanneling

process is the frequent strong changes in the negative particle transverse mo-

tion that leads to a limited applicability of a diffusion approach. These effects

can anyway be taken into account in Monte Carlo simulations. For instance,

the process of recapture under the channeling conditions of a dechanneled par-

ticle, the so-called rechanneling, was described well only using Monte Carlo

simulations [29]. However, in first approximation the exponential character

of dechanneling (Eq. (4.1)) for negatively charged particles is maintained for

highly-bent crystals, as shown by different experiments as well as Monte Carlo

simulations [28–31], ensuring its usage for our experimental cases (see below).

The volume reflection process can be treated for the negatively charged par-

ticles in the same way as for the positive ones. Therefore the formulae (3.1-3.2),

allowing one to calculate the maximal angle for VR are still valid. The only

difference is the correct usage of the interplanar potential being turned over for

negative particles (see Figs. 1.11,4.1). One must remember that the volume

reflection angle [99, 100] can be calculated by (3.1-3.2) in a form independent

of the beam energy. However, these formulae do not take into account mul-

tiple scattering, though they provide a good estimate of the volume reflection

peak position, as will be shown below. Since formulae (3.1-3.2) hold for both

positively and negatively change particles, they will be applied for electrons.

All the coherent effects mentioned above, such as channeling and VR, are

strongly dependent on the ratio between the initial transverse energy and the
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Figure 4.2: Piezo motor (a), dynamical holder (b) and bending of a silicon crystal

(c). The dashed arrow indicates the incoming beam, impinging on the crystal

mounted on a high-precision goniometer (G). The solid-black arrow indicates

particles deflected under the channeling mode, while the solid-white arrow

corresponds to VR particles. The deflected beam impinges on the LYSO Screen

(D).

planar potential well depth, which depends on the bending radius, and hence

on the incidence angle. In this work, a detailed and quantitative investigation

of this dependence will be presented, to obtain the optimal parameters of bent

crystals for applications.

4.3 Bent crystal manufacturing and experimental

setup

A sample holder prototype aimed to bend the crystal with a remote con-

trolled system was realized at the INFN-LNL lab in Legnaro, Italy. This in-

novative holder permitted to experimentally investigate important bent crystal

parameters for application, such as the channeling and VR deflection angle and
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efficiency and the dechanneling length as a function of the curvature radius R,

without manually re-bending the crystal. This allows a smooth increase of the

curvature, performing it by numerical control, avoiding stress concentrations

that causes the sample breaking during the mounting procedures in a normal

fixed curvature sample holder. The sample holder is also equipped with a re-

motely controlled distortion correction system. If the sample curvature is not

perfect, the channeling angle could vary along the beam dimension (torsion)

causing a detrimental effect on efficiency [130]. The correction system is an

additional degree of freedom allowing one to vary the torsion when the sample

is into the chamber, to immediately check the effect on the efficiency. Fur-

thermore, this innovative holder permits to re-bent the crystal without vacuum

breaking, permitting a considerable speed up of the data taking to access a

more extended set of data.

Fig. 4.3a shows the piezo motor step (grey) that translates a movable part

(green) with respect to a fixed one (brown). It can be done with 400 nm steps.

Two plugs are in-built in the two parts and translate one against the other

by actioning the step motor. The plugs (steel cylinders) have two rabbets to

secure the sample by a special gluing procedure. The plugs can rotate freely

in brass holes and are supported by pins screws. When the plug gets closer

due to translation caused by the motor, the sample is forced to bend (see Fig.

4.3b). To regulate the torsion a fine movement is obtained by a never ending

piezo driven screw (yellow) that pushes a rotating part (magenta) containing

the plug hole. The angular resolution is better than 1 µrad. The system was

calibrated in order to know the primary curvature radius as a function of the

number of steps of the translator motor. The capability of the second motor

to modify the crystal torsion was verified by means of high-resolution X-ray

diffraction.

The 15 µm long Si and Ge crystals samples were sequentially mounted onto

the dynamical bending holder; the picture in Fig. 4.3b shows the Si sample

mounted on the holder. Such an ultralow length is essential for our experiment,

because it must not exceed too much the dechanneling length as well as to

reduce the multiple scattering angle. A bending moment supported the crystal

at two opposite edges, leaving it free at the remaining edges. In this way,

the crystal surface, which is parallel to the (211) planes, was bent along the

(111) direction, obtaining a secondary bending of the (111) planes due to the

quasimosaic effect [131]. The advantages of crystals exploiting the quasimosaic

effect is represented by the possibility to manufacture ultra thin crystals large

enough to completely intercept the beam. In addition, due to the shape of the

potential well, the (111) bent planes (see Fig. 4.1) are the most efficient for
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the deflection of negatively charged particles. The anticlastic effect could be a

drawback of quasimosaic bent crystals but in the case of the present data, the

large bending and small thickness guarantee a complete anticlastic suppression

as demonstrate in [132]. This was checked by high resolution X-ray diffraction

by measuring the (111) orientation at different positions along the y-axis. No

anticlastic trend was evidenced with an exception of about 2mm close to the

sample border. On the other hand, a residual variation of the (111) plane

orientation of about ± 50 µrad inside the dimension of the measuring X-ray

beam (100 µm) was evidenced. This is interpreted as a residual sample rippling

induced by imperfections caused by the glueing procedure.

An experiment was carried out in the Hall B of the Mainzer Mikrotron

(MAMI) with 855 MeV electrons. The experimental setup is the same as in [133]

with the substitution of the Si microstrip detector to measure the beam profile

after the interaction with the crystal with a LYSO Screen (see Fig. 4.3c).

The screen has a thickness of 200 µm and is inclined of 22.5 degrees toward the

camera in the perpendicular direction with respect to the beam deflection plane

and was placed downstream the crystal of 6020 mm. The crystal holder was

mounted on a high-precision goniometer with 5 degrees of freedom. Translations

along the x and y axes were used to geometrically align the crystal with the

beam direction, while rotations around the x, y and z axes with an accuracy

of 17.5, 30, and 50 µrad respectively, were used to achieve angular alignment

of the crystal planes with the electron beam. The entire experimental setup

was kept under vacuum to avoid multiple scattering of the beam by air. The

beam was focused through dedicated quadrupole lenses: the resulting beam size

and angular divergence were 105 µm and 21 µrad along the vertical direction,

which is the crystal bending direction. The beam divergence is smaller of the

Lindhard critical angle for channeling, which is about 220 µrad at 855 MeV.

A schematic view of the experimental setup is shown in Fig. 4.3c: it allows

to characterize, with very high precision, Si and Ge crystals in terms of both

deflection efficiency and dechanneling length.

4.4 Experimental results and analysis

By exploiting the dynamical bending holder, channeling and VR of 855 MeV

electrons was tested for 4 and 3 different curvatures in case of Si and Ge crystals,

respectively. For each bending radius, R, the distribution of the particles angles

θx after the interaction with the crystal θXdef vs. crystal-to-beam orientation

θcr was measured by rotating the goniometer around the ideal alignment with

bent (111) planes. As an example, the experimental angular scan for the silicon
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Figure 4.3: Experimental (a,c) and simulated (b,d) angular scans. Deflection

angle vs. the crystal-to-beam orientation of Si (a,b) and Ge (c,d) crystals, bent at

315 µrad and 820 µrad respectively. Vertical white dashed lines represent the

distributions in Fig. 4.4 at both channeling and volume reflection orientation.

crystal with a deflection angle of θb = 315 µrad and the germanium crystal of

θb = 820 µrad are shown in Fig. 4.3. Fig. 4.4 shows the beam deflection distri-

butions with Si and Ge crystals oriented in channeling and in the middle of VR

region, for the angular position highlighted by dashed lines in Fig. 4.3. These

plots allow one to follow the transition between the main processes occurring

while changing the crystal-to-beam orientation. In the angular distributions for

channeling orientation (θcr = 0) the right peak represents the channeling mode

as well as the left one is for the over-barrier particles. By decreasing θcr to

about the middle of the range [−θb + θL;−θL] one sets up the VR orientation.

At the latter, the right peak represents volume captured particles. Finally, a

crystal alignment beyond this range suppresses all the coherent effects, leading

to the “amorphous” region where multiple scattering dominates.

The crystal bending angle and alignment has been measured experimentally

and verified by computer simulations using the CRYSTAL simulation code [A1,
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Figure 4.4: Experimental (solid) and simulated (dashed) distributions of deflected

beam by Si (a,b) and Ge (c,d) crystals, bent at 315 µrad and 820 µrad

respectively, for channeling (a,c) and volume reflection (b,d) crystal alignment.

These curves are represented by white vertical lines in Fig. 4.3. Experimental

values represent the projection of the beam spot collected by the screen along the

vertical direction (y) of bending. Simulations were performed with a statistics of

5 · 106 particles for each plot.

A3]. The perfect alignment with bent planes, i.e., θcr = 0, was experimentally

determined by the highest intensity of the channeling peak, recorded during the

angular scan. The channeling peak position also provided the crystal bending

angle, verified by CRYSTAL simulations. The Monte Carlo simulations permit-

ted to take into account the incoming angle distribution and sample rippling.

The outcomes of the CRYSTAL code with a statistics from 2 · 106 up to 5 · 106
particles are displayed in Figs. 4.3 and 4.4 for comparison with experimental

measurements.

The analysis of the angular distributions was carried out through a fitting

procedure based on the one presented in Refs. [14, 31]. The fitting function

represents the sum of the channeling part, described by gaussian:

dfch
dθXdef

=
Ach

σch

√
2π

exp

(

−(θXdef − θch)
2

2σ2
ch

)

, (4.2)

the volume reflection part, containing also a non-reflected overbarrier fraction
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and described by the sum of two gaussians:

dfV R

dθXdef
=

AV R

σV R

√
2π

exp

(

−(θXdef − θV R)
2

2σ2
V R

)

+
1−AV R

rσV R

√
2π

exp

(

−(θXdef − θV R)
2

2r2σ2
V R

)

(4.3)

and the dechanneling part, being an exponential distribution, convolved with

the first gaussian in (4.3):

dfdech
dθXdef

=
Adech

2θdech
exp

(

σ2
V R

2θ2dech
+

θch − θXdef

θdech

)

×
(

erf

(

θV R − θXdef +
σ2

V R

θdech√
2σV R

)

− erf

(

θch − θXdef +
σ2

V R

θdech√
2σV R

))

.

(4.4)

The total fitting function can be written as:

1

N

dN

dθXdef
=

dfch
dθXdef

+ BV R
dfV R

dθXdef
+

dfdech
dθXdef

. (4.5)

In (4.2-4.5) Ach, AV R, BV R, Adech and r are the normalizing factors, θch, θV R

and σch, σV R the mean angles and the standard deviations of corresponding

gaussians respectively as well as θdech the “dechanneling angle”, defining the

dechanneling length, found from the angular distribution, as Ldech = Rθdech.

The channeling efficiency is defined as the integral value of the gaussian fit of

the channeling peak (4.2), within ±3σch around the channeling peak, namely

ηch ≈ 0.9973Ach.

The fit procedure was carried out in two steps. First, Eq. (4.3) was applied

for the fit of the angular distribution of the crystal, aligned in amorphous di-

rection. The values AV R and r, extracted in the first step were used in the fit

(4.5) [14, 31].

The main difference with the fitting procedure from [14, 31] are the coef-

ficients Ach, BV R, Adech, treated independently. Though the increase of the

free parameters number reduces the accuracy, it is necessary in this case for a

correct description of initially overbarrier particles, as will be explained later in

the text.

In order to provide the most accurate simulation results as possible, the

simulated channeling efficiency values were directly computed by using the

CRYSTAL simulation code through the calculation of channeled (under-barrier)

particles population. The deflection efficiency obtained through the fitting of

simulated beam profiles is nearly the same calculated directly counting the num-

ber of under-barrier particles for R/Rcr < 20, determining the goodness of the

fitting procedure (4.2-4.5) to estimate the deflection efficiency. The limitation

of this procedure in the range R/Rcr > 20 is connected with the overlap of
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Figure 4.5: The experimental and simulated depedences of channeling efficiency

of Si and Ge crystals at optimal channeling orientation on the ratio of the

bending radius to its critical value.

the channeling and over-barrier peaks in the deflected beam profile for too high

bending radii as explained later in the text.

The experimental results were critically compared to CRYSTAL simula-

tions, highlighting a good agreement between them. The dependence of the

channeling deflection efficiency on the ratio R/Rcr is shown in Fig. 4.5 for both

experimental and simulation results. The errors on the experimental efficiencies

are due to the fitting error with an additional uncertainty connected with the

normalization procedure. On the other hand, the x-error of simulated results is

connected with the uncertainty of the crystal length, while the small y-error is

due to statistics. Table 4.1 displays all values of the curvature radii, bending an-

gles, θb, and channeling efficiency used in the experiment; Table 4.2 represents

Table 4.1: Measured Si and Ge crystal bending radia, angles and channeling

efficiency.

Material θb (µrad)
R
Rcr

θV R (µrad) ηch

Si 315 29.9 224 0.40± 0.08

Si 550 17.1 204 0.248± 0.016

Si 750 12.6 194 0.206± 0.013

Si 1080 8.72 183 0.165± 0.010

Ge 820 18.3 172 0.084± 0.017

Ge 1200 12.5 165 0.036± 0.007

Ge 1430 10.4 162 0.019± 0.004
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Table 4.2: Simulated Si and Ge crystal bending radia, angles and channeling

efficiency.

Material θb (µrad)
R
Rcr

θV R (µrad) ηch

Si 315 29.9 235 0.3818± 0.0004

Si 550 17.1 203 0.3000± 0.0004

Si 750 12.6 190 0.2519± 0.0003

Si 1080 8.72 182 0.1907± 0.0003

Ge 820 18.3 178 0.0909± 0.0002

Ge 1200 12.5 161 0.0468± 0.0002

Ge 1430 10.4 156 0.0320± 0.0002

the same results obtained with simulations. As expected, the dependence of

channeling efficiency is monotonic [13], since the potential well depth decreases

while R becomes smaller.

The experimental results highlighted a channeling efficiency larger than 35

% for silicon in agreement with simulations. Through the fitting procedure

(4.2-4.5) it was not possible to extract the dechanneling length for silicon in the

case R/Rcr > 20, while the channeling efficiency values was found with very

large errors as explained later in the text. The experimental error is rather high

for the curvature of θb = 315 µrad, because channeling and volume reflection

peaks are very close, and it is difficult to distinguish the channeling fraction. By

this reason, the angular distance between the channeling and volume reflection

peaks is the main restriction of the fit (4.2-4.5). Nevertheless, it is clear from

Fig. 4.4 upper left that high-efficiencies as those in this paper have never been

achieved so far for electrons.

On the other hand, channeling efficiency for germanium achieves 8 % at the

lowest experimental bending angle. This is indeed the first evidence of negative

beam deflection via channeling in a bent Ge crystal.

Although, channeling efficiency for germanium is much lower than for silicon,

this effect should not be attributed to the quality of the crystal, because both

germanium and silicon crystals were manufactured through the same procedures

leading to high performance of both crystals at much higher energy [16–18]. The

only reason for such a difference owes to the influence of Coulomb scattering,

which is about 2.2 times stronger for Ge than for Si. Indeed, this angle can be

roughly estimated by multiple scattering formula [94]:

θsc =
13.6MeV

pv

√

lcr/Xrad[1 + 0.038 ln(lcr/Xrad)], (4.6)
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Figure 4.6: The experimental and simulated dependence of the dechanneling

length on the ratio of the bending radius to its critical value at ideal channeling

orientation. The dechanneling length for the first silicon curvature of θb = 315

µrad, was not extracted because channeling and volume reflection peaks were too

close, thus making the fit (4.2-4.5) practically inapplicable.

where Xrad is the radiation length, lcr the crystal length along the beam di-

rection. By substituting the crystal parameters into (4.6), one obtains the

estimated multiple scattering angles for silicon and germanium crystals, being

130 µrad and 290 µrad, respectively. While the first value is 1.8 less than

the Lindhard angle, the second one is of the same order. This fact explains

our choice of ultra-thin crystals (15 µm), otherwise multiple scattering would

cover all the coherent effects, leading to the impossibility to measure neither

channeling or VR.

To complete the analysis on channeling, one should evaluate the main pa-

rameter that determines the steering capability of a crystal through the dechan-

neling length. Such parameter has been extracted by using the fit (4.2-4.5) of

both experimental and simulated deflection distributions. The dependences of

extracted dechanneling length on the ratio of bending radius and critical ra-

dius for both silicon and germanium are shown in Fig. 4.6. The corresponding

experimental and simulation values are listed in Table 4.3.

As for channeling efficiency, the measured dechanneling length depends

monotonically on the crystal radius in agreement with simulations. The sil-

icon dechanneling length is comparable with the length of the crystal, while

for germanium being at least 1.5–3 times less. This fact explains the difference

in channeling efficiency between the two materials, being due to the different

multiple scattering contribution for different atomic number Z.

The present data demonstrate that negative particles steering efficiency is
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Table 4.3: Experimental (Ldech Exp) and simulated (both from distribution

(Ldech Sim) and directly from the dependence of channeling efficiency on the

penetration depth (Ldech DSim) as well as from the same dependence excluding

overbarrier particles captured under the channeling mode and then dechan-

neled (L′
dech DSim) Si and Ge dechanneling lengths. All dechanneling lengths are

measured in µm.

R
Rcr

Ldech Exp Ldech Sim Ldech DSim L′
dech DSim

Si 17.1 17.7± 3.0 16.4± 2.1 18.96± 0.05 21.14± 0.10

Si 12.6 14.0± 2.2 15.6± 1.4 16.48± 0.05 18.05± 0.07

Si 8.72 10.1± 1.0 12.2± 0.9 13.62± 0.05 14.73± 0.06

Ge 18.3 9± 5 10± 2 7.97± 0.07 8.95± 0.26

Ge 12.5 7.3± 1.2 7.1± 0.5 6.02± 0.03 6.46± 0.11

Ge 10.4 5.9± 1.5 6.1± 0.4 5.29± 0.03 5.58± 0.09

mainly regulated by dechanneling length and not by the channeling well depth

that would have benefit Germanium. It is worth to note that this is a peculiar

feature of negative particles since for positive ones, the influence of the potential

well depth dominates the dechanneling process, and once Ge and Si efficiency for

short crystal are compared, Ge performances prevail on Si [16–18]. This insight

into the channeling performances by changing the atomic number suggests that

low scattering materials such as diamond could be an interesting candidate to

be investigated to improve the steering efficiency.

Given the good agreement between experiments and simulations, we may

exploit the latter to investigate deeply the dechanneling process. In particu-

lar, one may separate the different contributions on the dechanneling distri-

bution (10), between the VR and channeling peaks. In fact, already in [29]

it was demonstrated that the rechanneling process (capture under channeling

of dechanneled particles, see section 2) may have a strong influence on the

dechanneling length. Here we investigate also the contribution of overbarrier

particles to the dechanneling distribution. Fig. 4.7 displays different fractions

in the angular distributions obtained directly from simulations (solid), namely

channeling, dechanneling with taking into account rechanneling as well as the

volume reflection/overbarrier fraction for both silicon (a) and germanium (b).

For comparison the same fractions were extracted from the angular distributions

by using the fit (4.2-4.5) (dashed).

Fig. 4.7 highlights a contribution of initially overbarrier particles, that can

be captured and dechanneled from the channeling mode several times (marked

in Fig. 4.7 as rechanneled ovebarrier). In a bent crystal, the contribution of
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Figure 4.7: Simulated distributions of deflected beam by Si (left) and Ge (right)

crystals, bent at 750 µrad and 1200 µrad respectively, and the channeling,

dechanneling, initially overbarrier, overbarrier, captured under and escaped the

channeling mode one and two times (captured overbarrier) and the sum of

captured overbarrier and dechanneling fractions. Dashed curves represent the

total, channeling, overbarrier and dechanneling fractions, obtained by means of

the fit (4.2-4.5).
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Figure 4.8: Interplanar potential of (111) Si for maximal bending radius (4.76

cm) used in the experiment. Overbarrier marks initially overbarrier fraction of

particles that can be captured into the channeling mode or rechaneled (rech.)

and dechanneled (capt.) once or several times.

overbarrier particle cannot be eliminated, even considering a parallel beam. In-

deed, due to the asymmetry in the potential barrier introduced by the bending,

particles approaching with zero transverse kinetic energy to the right potential

barrier are reflected to the left, gaining a non-zero transverse kinetic energy.

A sketch of initially overbarrier particles is depicted in Fig. 4.8; such particles

follow the bent crystal planes and can be deflected to a considerable angle.

The solid black line in Fig. 4.7 represents the contribution of dechanneled

and rechanneled particles with the contribution of captured overbarrier parti-

cles. If compared with the dotted solid black line, representing the result of

the fit (4.2-4.5), it is clear that from the experimental deflection distribution

is not possible to extract a dechanneling length correspondent to only initially
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Figure 4.9: Exponential fit of the depedence of the channeling efficiency in the

penetration depth in Si and Ge crystals with the same parameters as in Fig. 4.7

and the same dependences without the overbarrier particles, captured under and

escaped the channeling mode.

channeled particles. By this reason the fit [14, 31] was modified to (4.2-4.5).

To highlight deeply the contribution of captured overbarrier particles, chan-

neling efficiency was also simulated in a dependence on the penetration depth z,

taking (solid) and not taking (dashed) into account this contribution for both

Si (red) and Ge (blue) crystals as shown in Fig. 4.9. By using an exponential fit

(4.1) the values of dechanneling length were extracted (see Table 4.3, Ldech DSim

and L′
dech DSim, for the cases with and without captured overbarriers, respec-

tively). The values Ldech DSim differ from the extracted ones from experimental

and simulated angular distributions, no more than on ∼ 1–2 µm, lying usually

within the frame of the error.

On the contrary, the simulated dechanneling length without the contribution

of captured overbarrier particles, L′
dech DSim, (see Table 4.3), exceed Ldech DSim

by 5–10%. In other words, the initially overbarrier particles decrease the total

dechanneling length by several percent because can usually be captured slightly

below the potential well barrier, as shown in Fig. 4.8. Since these large am-

plitute particles dechannel faster, the dechanneling length of these particles is

lower than for the stable ones. Consequently, the capture of initially overbarrier

particles reduce the total measured dechanneling length. Furthermore, even if

these values were obtained in the same way as Ldech DSim, the depedence of

L′
dech DSim on the penetration depth evidently differ from the exponent func-

tion. Indeed, one has to remember that the dechanneling of negative particles

is mainly due to strong scattering with nuclei that has an intrinsic non-slow

diffusive nature [98].
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Figure 4.10: Theoretical, experimental and simulated dependence of the maximal

value of volume reflection peak position w.r.t. the Lindhard angle on the bending

radius w.r.t. its critical value for both Si and Ge (111) bent crystals.

The relative difference between L′
dech DSim and Ldech DSim increases with

crystal radius rise. This is explained by decreasing of the difference E0d0/η

(η = R/Rcr, see chapter 3) between the right and left potential barriers. Con-

sequently such overbarrier particles are closer to the potential boundary. This

means that such particles will remain near the potential barrier for a longer

distance due to low transverse velocities, having the influence on the total

dechannelling length also for a longer distance at higher radius values. There-

fore, initially ovebarrier particles, captured under channeling mode and then

dechanneled, can make a several percent contribution into dechanneling length

value.

Finally, we also investigated the other mechanism of beam deflection, i.e.,

the VR. In particular we studied VR deflection angle vs. the curvature radius,

while comparing to the maximal angle expected from the theory (3.1-3.2).

In order to verify the theoretical dependence of the maximal angle of VR

on R (see Eqs. 3.1-3.2), we used the experimental and simulated values for the

modules of a maximal VR angle (determined by gaussian fit) comparing them

in Fig. 4.10. For channeling deflection angle, the agreement between theory

and both experimental and simulated results is very good for silicon, while

being worse for germanium. This fact is explained again by the contribution of

multiple scattering of non-volume reflected particles, allocated around 0 angle

(see Figs. 4.3, 4.4), that shifts the volume reflection peak center towards 0

on the angular distribution. Multiple scattering has a much stronger influence

for germanium, for which its r.m.s. angle is 2.2 times higher than for silicon.

By this reason the measured maximum VR for silicon of 235 µrad is about θL
angle for silicon (in agreement with previous experiments [29, 30]), while it is

only 0.6θL for germanium, being equal to 178 µrad.
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4.5 Conclusions

An experiment on beam steering of 855 MeV electrons by using 15 µm bent

silicon and germanium crystals has been carried out at the Mainzer Mikrotron.

Through the exploitation of an innovative piezo-actuated mechanical bender,

it was possible to test planar channeling and volume reflection for several radii

of curvature.

Experimental results, in agreement with Monte Carlo simulation, demon-

strated that maximum channeling efficiency were about 40% and 8 % for silicon

and germanium, respectively. The difference between these two materials has

to be ascribed to the higher atomic number Z for Ge, which results in a higher

Coulomb scattering contribution, causing stronger dechanneling. Indeed, the

main parameter of planar channeling, i.e., the dechanneling length was also

measured, resulting to be close to the crystal length for Si, but 2 times shorter

for the Ge crystal at the largest bending radius. In particular, the usage of a

Si crystal with the length comparable to the dechanneling length permitted an

unprecedented level of steering efficiency for an electron beam.

On the other hand, it is important to remark that any measurements of a

negatively charged beam steering in a germanium bent crystal at the energies

lower than hundreds of GeV have never been done before, due to the lack of

properly designed crystals, i.e. with a length of the order of the dechanneling

length. Therefore, the evidence of beam steering of sub-GeV electrons in a Ge

crystal was demonstrated for the first time.

The influence of initially non-channeled particles on the dechanneling pro-

cesses, which causes a reduction of the dechanneling length in case the crystal

thicknesses are comparable with the dechanneling length, was also highlighted.

Finally, the dependence of the ratio between the volume reflection angle

and the Lindhard angle vs. the R/Rcr (see Eq. (3.1-3.2)) was investigated,

demonstrating that it does not depend on the energy, being very useful to

make prediction at different energies.

The presented results, in particular the studies of beam efficiency and

dechanneling length vs. the crystal curvature and atomic number, are of interest

for application, such as generation of e.m. radiation in higher Z-materials bent

and periodically bent crystals. Given the good agreement with Monte Carlo

simulation, one may also think to apply the presented approach to extrapolate

information on charged particle steering at higher energies, for instance to in-

vestigate the possibility of crystal-based collimation/extraction at current and

future electrons accelerators.
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CHAPTER 5

PLANAR CHANNELING AND QUASICHANNELING

OSCILLATIONS IN THE DEFLECTION ANGLE

DISTRIBUTION

As has been already mentioned above, interplanar electric field induces

harmonic-like transverse oscillations. These oscillations are called planar chan-

neling oscillations, which correspond to an under-barrier motion along the crys-

tal planes.

Planar channeling oscillations at low energies in backscattering were pre-

dicted by J.H. Barrett [134, 135] in simulations. Later they were observed in

several experiments with a straight crystal [136–142] with ion beams of the

energy of the order of MeV and well described in [57, 60].

In this chapter a new effect, connected with planar channeling oscillations at

high energies is predicted [A3, A4]. Namely, the planar channeling oscillations

in a bent crystal are transformed at certain conditions into series of equidistant

peaks, called dechanneling peaks. In other words, the way of direct observation

of planar channeling oscillations in a bent crystal at high energies is suggested.

Moreover a new kind of oscillations in the deflection angle distribution,

strictly related to the motion of over-barrier particles, i.e. quasichanneled par-

ticles, is predicted [A4]. Such oscillations, named planar quasichanneling oscil-

lations, possess a different nature than channeling oscillations. It is shown that

channeling oscillations can be observed only for positive particles while qua-

sichanneling oscillations can exist for particles with either sign. The conditions

for experimental observation of channeling and quasichanneling oscillations at

existing accelerators with available crystal are found and optimized. Finally,

the experimental observation of quasichanneling oscillations is reported [A6].

5.1 Planar channeling oscillations in the deflection an-

gle distribution

An example of dechanneling peaks, corresponding to the planar channeling

oscillations in the angular distribution of particles passed through the crystal,

is shown in Fig. 5.1 for (110) planes. This result was obtained by simulations

with the CRYSTAL code.

The origin of the dechanneling peaks consists in a high-phase correlation
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Figure 5.1: Angular distribution of the 7 TeV proton beam after interaction with

the silicon crystal at the channeling orientation. The simulation layout is: r.m.s.

beam angular divergence θin = 0.5µrad, crystal length lcr = 2mm, bending angle

θb = 20µrad, (110) planes.

of trajectories of different particles, dechanneling close to the atomic planes

where the nuclear density is high. Note that the number of dechanneling peaks

corresponds to the number of particle approaches to a crystal plane where the

probability of scattering is high. In other words, the dechanneling peak number

in Fig. 5.1 is equal to the number of channeling half oscillations. In particular,

particles entering the crystal near the left (right) side of a channel, bent to the

right, are dechanneled after even (odd) number of half oscillations.

For positive particles, the oscillation length is nearly the same for most of

particles with the same energy and different amplitudes of channeling oscilla-

tions. This gives rise to phase correlation of different trajectories. Depending

on the difference in the oscillation lengths, such correlation can be conserved

for several or, at certain conditions, even several tens of oscillations.

The channeling oscillation length can be evaluated directly by integration

of the equation of motion. Examples of the dependence of this length on the

coordinate of the left turning point of the trajectory are shown in Fig. 5.2. The

corresponding potential wells are also drown in Fig. 5.2. Note that the particles

dechannel with high probability only near the lower potential maximum, to

which the particles approach closer as shown in Fig. 5.2.

Let us determine the dechanneling zone as an energy range limited by the

potential energy values in the following points. The first point is the left po-

tential maximum of a channel bent to the right. The other one is to the right

from this maximum at the distance of one amplitude of atomic thermal vibra-
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Figure 5.2: The channeling oscillation length vs the left turning point of the

trajectory (left column) and the corresponding potential wells (right column) in a

bent crystals: a,d: 7 TeV protons, lcr = 2mm, θb = 20µrad, (110) planes; b,e: 20.35

GeV positrons, lcr = 0.11mm, θb = 1600µrad, (110) planes; c,f: 7 TeV protons,

lcr = 2mm, θb = 20µrad, (111) planes. Larger channeling oscillation length

corresponds to the wider potential well. Horizontal lines correspond to the

channeling length estimation by (1.29). The left point placed at x=0 indicates the

coordinate of the crystal plane.
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tions (0.075 Å for Si at room temperature [57]) from the nearest crystal plane

(see Fig. 5.2). In the space of transverse coordinates the dechanneling zone

covers the extreme points of particle trajectories with transverse energies in the

interval defined above.

It is important to underline that dechanneling effect implies two stages: ex-

ceeding of the critical value of the transverse energy and consequent escape from

the channel. Hereinafter, the dechanneling point and probability of dechannel-

ing mean scattering of a particle, leading to the transverse energy rise, i.e. the

first stage of dechanneling. Consequently, if such particle is deflected toward the

center of the channel it will pass another oscillation length before the escape.

It is shown in Fig. 5.2 that indeed the channeling oscillation length varies

rather weakly in the dechanneling zone and Eq. (1.29) can be applied. Conse-

quently there is a phase correlation of different trajectories for positive particles

in the dechanneling zone. Thus, such particles dechannel almost at the same

depths modulo λ/2.

The decrease of the ratio of the crystal bending radius to its critical value

R/Rcr reduces the phase correlation of the trajectories, resulting in deteriora-

tion of the structure of dechanneling peaks as will be shown below. The length

estimated by Eq. (1.29) becomes a bit overestimated at small radii of curvature

(see Fig. 5.2b). This results in a higher number of dechanneling peaks.

The channeling oscillation length in Fig. 5.2 is proportional to
√
pv (like

in the formula (1.29)) for fixed form of the potential well and fixed value of

the transverse energy. Thereby, phase correlation should take place at different

lengths for different energies of positive particles.

For the negative particles, the interplanar potential U(x) becomes inverted,

resulting in the atomic plane being in the channel center. Thus, the dechan-

neling zone includes all the amplitudes of oscillations. Depending on the am-

plitude, the channeling oscillation length can differ several times as is shown in

Fig. 5.3. In addition, electrons cross crystal planes in the middle of the channel

when their angle θx is maximal in magnitude [89]. Positrons, on the opposite,

approach the planes at the minimal angle values. Consequently the transverse

energy change ∆ǫ for electrons is proportional to the scattering angle ϑx while

for positrons to its square ϑ2
x [89]:

∆ǫ = pvθxϑx + pv
ϑ2
x

2
→
{

pvθxϑx, if θx → θxmax;

pvϑ2

x

2 , if θx → 0.
(5.1)

Thereby, the amplitude of electron oscillations due to scattering changes

more for electrons than for positrons. Thus, any phase correlation will quickly
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Figure 5.3: Channeling oscillation length for 20.35GeV electrons, lcr = 0.11mm,

θb = 1600µrad, (110) planes.

disappear and the planar channeling oscillations for electrons will not be ob-

servable in the angular distribution.

It is also important to explain why the pattern of peaks is a sequence of

a high peak followed by a lower one (see Fig. 5.1). This is explained by an

asymmetry of the potential well displayed in Fig. 5.2. In particular, in the

space of transverse coordinates the dechanneling zone close to the left side of

the potential is wider than the zone near the opposite reflection point. Indeed,

if one takes the dechanneling zone width to be equal to the thermal vibration

amplitude (0.075 Å for (110) silicon crystal planes), one obtains the correspond-

ing potential energy difference ∆U ∼ 2 eV. Its value as well as the dechanneling

zone width does not considerably change for different crystal bending and beam

energies. In contrast, the width of the zone near the reflection point xref (see

Fig. 5.2) strongly depends on the crystal bending:

∆x ≈ ∆U/U ′
eff(xref). (5.2)

Through the use of the numerical parameters of the potential in Fig. 5.2d,

one obtains ∆x = 0.042 Å, which is almost two times less than the thermal

vibration amplitude. This ratio explains the alternation of high and low peaks.

Planar channeling oscillations can also be observed for (111) crystal planes.

The main contribution here is due to the wider channel because the dechannel-

ing zone introduced above is considerably narrower for the small channel as is

shown in Fig. 5.2f. This is because a potential maximum and a crystal plane do

not coincide due to both the centrifugal force influence and non-equidistance of

(111) crystal planes. Therefore, the distance between the potential maximum

and the nearest crystal plane is less at the left side of the small channel than
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Figure 5.4: The angular distribution of 7 TeV protons behind the (110) bent

crystal of 4 mm length and 50 µrad bending angle and volume reflection

orientation is −35 µrad (b).

of the large one. The channeling oscillation length varies strongly in the case

of the small channel, causing smearing of phase correlations. The oscillation

length value is also smaller for the small channel than for the larger one. This

causes reduction of the distance between the peaks, resulting in complicated de-

tection. Thereby, only the planar channeling oscillations in the wider channels

will be practically observable.

The appearance of dechanneling peaks is also possible for volume-captured

particles (see Fig. 5.1b). when the orientation of volume reflection [A3, A4]

is set up. In this case, the lower peaks will completely disappear because a

particle can be captured with a high probability only near the left potential

maximum due to the asymmetry of the potential well (see Fig. 5.2 and 1.13).

It results in a good phase correlation of transverse motion of volume captured

particles, even better than for the channeling orientation. For this reason, the

spacing between the peaks corresponds to one channeling oscillation length for

the volume reflection orientation.

The dechanneling peaks may be observed if the inter-peak angular distance

∆ϕch exceeds the doubled incoherent scattering angle θsc [A3]:

∆ϕch

2θsc
=

λθb
4lcr

pv
√

Xr

lcr

13.6MeV
(

1 + 0.038 ln
(

lcr
Xr

)) > 1, (5.3)

where lcr and θb are the crystal length and bending angle, respectively, Xr

is the radiation length equal to 9.36 cm for silicon. The Coulomb scattering
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angle was estimated according to [94]. For the volume reflection orientation

this condition will be twice softer because half of the peaks will not appear

as mentioned above. Thus, volume-reflection orientation provides a still better

conditions than that for channeling.

Another important condition is the crystal bending radius R to be larger

than the critical one, Rcr [62]:
R

Rcr
> 1. (5.4)

As mentioned above, this is the condition for the channeling to occur in a bent

crystal [5, 62].

The third important condition is the angular divergence of the incident beam

should not be greater than half of the critical channeling angle θL.

θin r.m.s. < θL/2. (5.5)

Indeed, the angular divergence, approaching the critical angle, results in a con-

siderable oscillation phase shift. Such trajectories are, of course, uncorrelated.

This concerns both channeling and volume reflection orientations.

Some sort of scaling of the channeling oscillation picture with energy can

readily be introduced. Such a scaling can be assured by the conservation of

both the peak number:

npeaks =
2lcr
λ

= Const; (5.6)

and of the ratio of the inter-peak interval to the Coulomb scattering angle:

∆ϕch

2θsc
= Const. (5.7)

By substituting Eq. (1.29) into (5.6) one obtains:

lcr ∼
√
pv. (5.8)

Substituting further Eq. (5.3) into (5.7), using (5.8) and neglecting the loga-

rithmic factor one obtains that:

θb ∼ 1/(pv)3/4. (5.9)

Finally the bending radius scaling can be simply obtained from Eqs. (5.8) and

(5.9):

R ∼ (pv)5/4. (5.10)
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Figure 5.5: Ionization losses map at channeling orientation of the (110) crystal.

5.2 Ionization energy losses

The planar channeling oscillations can be revealed not only in the angular

distributions but also in ionization losses map. An example of such a map

(particles distribution on both deflection angles and energy losses Eloss) at the

channeling orientation for the (110) crystal at 7 Tev is shown in Fig. 5.2.

Indeed, the “waves” at the dechanneling zone represent dechanneling peaks.

However one can observe in Fig. 5.2 another effect. Namely, the channeled

particles with high amplitude of oscillations can lose even more energy than in

the amorphous silicon. This is because the particles spend considerable time

before dechanneling near crystal planes where the electron density is much

higher than the electron density of the crystal as it is illustrated in Fig. 5.2.

Thus, the electron density averaged along the trajectory will be higher than its

average value in the crystal, since the ionization losses are considerably higher

near the crystal plane than in the center of a channel. These particles dechannel

fast as a consequence.

The trajectory correlations are presented not only for planar channeling

oscillations. The loop-like picture for the channeled particles is explained by

the different number of channeling oscillations as well as by the different level

of ionization losses depending on the oscillation amplitude.

The effect of excess of the ionization losses over the amorphous level was
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Figure 5.6: Ionization losses along a trajectory of a dechanneling particle (left)

and depending on the transverse coordinate (right).

observed before [143–145] only for the (111) atomic planes. This naturally

exerts an excess of the electron density over the average level in a crystal simply

due to the proximity of the (111) planes grouped in closely spaced pairs.

5.3 Planar quasichanneling oscillations in the deflec-

tion angle distribution

Planar channeling oscillations in backscattering experiments at low energy

were observed [136–142] while they have not been observed yet at higher energy.

However, there is another kind of oscillations not observed before under neither

regimes. This kind of oscillations manifests itself as the peaks in the angular

distribution which are close to the channeling peak (Fig. 5.1). Hereafter, such

new kind of oscillations will be called planar quasichanneling oscillations in the

deflection angle distribution.

Such oscillations have a different nature than planar channeling oscillations

because the distance between them is smaller than the lowest possible half

channeling length. In addition, the location of the peaks is almost the same for

particles with different charge signs. As we will show below, this indicates the

involvement of over-barrier particles.

A qualitative explanation can be obtained from the analysis of the over-

barrier trajectories, shown in Fig. 5.7, highlighting the dependence of the par-

ticle deflection angles in the laboratory reference system on z:

θXdef =
z

R
−
√

2(ǫ− Ueff(x(z, ǫ)))

pv
, (5.11)

where ǫ is the initial transverse particle energy, x and z the particle transverse

and longitudinal coordinates respectively. At z = lcr, the first term in Eq.
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Figure 5.7: The effective potential Ueff (top) and the ideal over-barrier

trajectories (middle and bottom) (angle (5.11) vs longitudinal coordinate) of

20.35 GeV electrons (left column) and for positrons (right column) without

scattering. The transverse starting point of trajectories is fixed at x = 0, the

longitudinal one varies randomly. The transverse energy varies in the range of

several eV above the potential barrier at x = 0. The crystal parameters are:

lcr = 60µrad, θb = 400µrad, (110) planes. The longitudinal coordinates in bottom

figures are close to the crystal end.
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Figure 5.8: Ideal over-barrier trajectories (angle (5.15) vs longitudinal coordinate

starting at the point of the first potential barrier crossing after dechanneling) of

20.35 GeV electrons (left column) and positrons (right column) in the co-rotating

reference system without scattering. All the conditions are the same as in Fig.

5.7.

(5.11) becomes z/R = θb and θXdef is the observed particle deflection angle as

in Fig. 5.1.

Let us consider the ideal trajectories without any incoherent scattering or

energy losses. Also, only dechanneled particles are considered because usually

most of the particles initially not captured under channeling state will not

achieve the angles close to the channeling direction. Let us also fix the starting

point of the over-barrier trajectories in a point above the potential barrier,

neighboring the dechanneling point (in Fig. 6 the point is indicated as x = 0).

Only the longitudinal starting coordinate will be varied randomly. Fig. 5.7

demonstrates that the trajectories tend to group together at certain phases

into parallel lines separated by one over-barrier oscillation. Such concentration

will generate a new series of peaks in the angular distribution at the crystal

exit.

All the lines formed are parallel to the line representing the angle of bending

of a crystal plane:

θXdef = z/R. (5.12)

The main reason for their appearance, is correlation of different over-barrier

trajectories even in the first potential well (see Fig. 5.7). These trajectories

have almost the same oscillation lengths with the only exception of a small

region near the closest barrier to the point of dechanneling. Let us define the

n-th oscillation length λn of an over-barrier particle as a longitudinal distance

passed by this particle traveling between two neighboring potential barriers n

and n+1, the first of which Ueff(0) is the closest to the value of the transverse

energy ǫ and Ueff(0) < ǫ. Therefore, all the over-barrier trajectories differ only
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by a starting longitudinal coordinate which varies along a bent crystal plane

parallel to the line (5.12) according to Eq. (5.11).

The oscillation length of different trajectories is almost the same by the rea-

son that the main contribution to the quasichanneling peaks is due to dechan-

neling process. The transverse energy change ∆ǫ (Eq. 5.1) is mainly due to

soft Coulomb scattering and, therefore, ǫ can exceed the closest potential barrier

at most by several eV. The relative change of the n-th over-barrier oscillation

length can be calculated by formula:

∆λn

λn
=

∆ǫ

2

∫ nd0
(n−1)d0

dx
(ǫ−Ueff (x))3/2

∫ nd0
(n−1)d0

dx√
ǫ−Ueff (x)

. (5.13)

As a rule, this ratio does not exceed ∼ 10% for dechanneled particles. How-

ever, this also applies to the particles, initially not captured under the chan-

neling mode but achieved the deflection angle close to the channeling direction.

Thereby, they must provide the peaks of quasichanneling oscillations to the

same locations as the dechanneled ones.

The location of parallel lines can be found by the condition that the tangent

lines dθXdef/dz to the trajectories are parallel to the line (5.12). This condition

transforms to:

dUeff

dx
= 0, (5.14)

which implies the locations of local minima and maxima of the potential Ueff

(see Fig. 5.7). Therefore, the trajectories group between the minima and

maxima as shown in Fig. 5.7 because dθXdef/dz ≃ z/R.

The same concept can be explained in a different way if one builds a particle

trajectory in the co-rotating reference system starting in the point of the first

crossing potential barrier zb after dechanneling represented by:

θX = −
√

2(ǫ− Ueff(x(z − zb, ǫ)))

pv
. (5.15)

An example of such trajectories is shown in Fig. 5.8. These trajectories have a

series of oscillations becoming shorter and shorter and tending to the line (z −
zb)/R. The oscillations correspond to accelerating (dθXdz < 0) and decelerating

phases (dθX
dz

> 0). The decelerating phases are indicated by red strips in Fig.

5.7).

The particle angular distribution at this crystal exit (like in Fig. 5.1) is
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given by:

dN

dθX
=

dN

dz

∑

i

1

|dθX/dz|i
, (5.16)

where the summation bears on the roots zi of the Eq. (5.15) at the crystal exit.

It has asymmetric peaks at dθX
dz = 0 corresponding to extrema of Ueff . Indeed,

when a particle crosses one extremum, it keeps nearly the same angle θX for

a long distance. By application of the potential values Ueff for minima and

maxima and using Eq. (5.11), one obtains the equations of two parallel lines

which are the boundaries of trajectory concentrations:

θ′Xdef n = z/R −
√

2V0n

pv
;

θ′′Xdef n = z/R −
√

2(V0n+∆V )

pv
,

(5.17)

for the potential maxima and minima respectively. ∆V is the potential energy

difference between the neighboring local maximum and minimum while V0 is

the difference between two neighboring maxima of the potential [62]:

V0 = pvd0/R. (5.18)

By substituting Eq. (5.18) in (5.19) and taking into account z = lcr at the

crystal exit one finally obtains the location of the bounds containing the peaks

of quasichanneling oscillations in the deflection angle distribution:

θ′Xdef n = θd −
√

2d0n

R
;

θ′′Xdef n = θd −
√

2d0n

R
+

2∆V

pv
.

(5.19)

In this equations the bending angle θb was replaced by the peak deflection angle

in channeling mode θd to describe a possible misalignment of a bent crystal

θcr = θd− θb which shifts both the channeling peak and quasichanneling peaks.

Negative particles tend to be closer to the first angle while the positive to

the second one, where the derivative dθXdef/dz is smoother.

However, under influence of scattering the peaks can be blurred and over-

lapped because of close values of particle deflection angles in the interval

[θ′Xdef n, θ
′′
Xdef n]. Generally such pair of peaks will form a “combined” peak, lo-

cated between them. As it will be shown in our simulations, the intervals (5.19)
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can also overlap depending on R, when ∆V > V0, which approximately corre-

sponds to R > 7Rcr. Therefore, the peaks can be formed at the intersection of

these zones.

The angular difference between such neighboring peaks ∆ϕqch can be found

from these equations as:

∆ϕqch =

√

2d0
R

+ (θd − θXdef)2 − (θb − θXdef). (5.20)

Both of Eq. (5.19) give the same result (5.20). Thus, having the position of one

peak of quasichanneling oscillations located between boundaries (5.19), one can

use the formula (5.20) to obtain the next one on the left side from the previous

(see Fig. 5.1). For large n, the equation (5.20) reduces into:

∆ϕqch ≈
d0

R(θd − θXdef)
. (5.21)

It is important to stress that such formula does not depend on the particle

energy but only on crystal characteristics, such as interplanar distance and

bending radius.

Being an over-barrier effect, quasichanneling oscillations can be experimen-

tally observed for any angular divergence less, of course, than the crystal bend-

ing angle. The main constraint here is the limited statistics of the over-barrier

particles in the angular distribution, which depends in turn on channeling effi-

ciency. Therefore, short crystals are preferred to provide the highest efficiency.

In order to find the extremal conditions where the observation of quasichan-

neling oscillations is still possible, one can estimate only the first oscillation

forming the closest peak to the channeling one. For the initial angle θXdef in

(5.21) one should take the left boundary of the channeling peak to be θb − θL.

In this case one obtains the highest possible angular difference between the

channeling peak and the peak of a quasichanneling oscillation:

∆ϕqch

2θsc2
=

d0
2RθL

pv
√

Xr

λ1

13.6MeV
(

1 + 0.038 ln
(

λ1

Xr

)) > 1. (5.22)

λ1 can be roughly estimated to be equal to half of the channeling oscillation

length (1.29), i.e. λ1 ∼ λ/2, in contrast to (5.3) representing the remaining

particle distance in a crystal after dechanneling.

In order to observe quasichanneling oscillations, one should also satisfy the

condition of the bending radius to be larger than the critical one (5.4).

Since Eq. (5.22) for quasichanneling oscillations depends on energy like Eq.

(5.9) for channeling oscillations, they scale on energy in the same way.
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The ratio of maximal interpeak distance of quasichanneling oscillations to

that of channeling oscillations can be estimated by using (1.29), (5.3), (5.5) and

(5.22), resulting in:

∆ϕqch

∆ϕch
<

2

π
. (5.23)

For volume reflection, the analogous ratio will be two times lower. Thus, the

width between the peaks for channeling oscillations is considerably higher than

for the quasichanneling ones. However, the different role of multiple scattering

(compare (5.3) and (5.22)) and angular divergence makes the conditions for

observation of quasichanneling generally more preferable.

5.4 Simulation results

For a deeper understanding of both channeling and quasichanneling oscilla-

tions we performed a numerical simulation.

The program CRYSTAL [A1, A3] was applied for simulations. The sim-

ulations were performed for a single passage of charged particles through the

crystal. The typical statistics was 106 particles. The angular divergence of

the initial beam was set to be less than θL/4. The bent crystal parameters

were chosen to fulfil the conditions (5.3-5.4, 5.22) for clear observation of both

channeling and quasichanneling oscillations.

The simulation of the distributions of the particle angles after interaction of

particles with the crystal is shown in Figs. 5.9-5.10 for channeling and in Fig.

5.11 for volume reflection orientations. The energy in the simulation was chosen

in correspondence to the beam energy in currently operating accelerators.

Both channeling and quasichanneling oscillations are observable. Moreover,

they are in a good agreement with the estimations obtained above. In partic-

ular, the simulated interpeak distance for channeling oscillations is consistent

with the estimation of channeling oscillation length (1.29). The highest devi-

ation is for 20.35 GeV because in that case the bending radius is close to the

critical radius. The correlations quickly disappear also because of rather small

bending radius. As mentioned above for volume reflection, the interpeak dis-

tance corresponds to one oscillation length, in contrast to channeling for which

interpeak distance is half of one oscillation length. As expected, the planar

channeling oscillations are not observed for negative particles.

Simulated quasichanneling oscillations agree with formulae (5.19-5.20) for

both signs of particles even for the first oscillation, i.e., the closest one to the

channeling peak. Vertical lines calculated by (5.19) define the location of peaks
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Figure 5.9: The angular distributions of particles after interaction with the silicon

crystal at the channeling orientation. Vertical lines indicate the zone of

quasichanneling oscillations manifestation calculated by Eq. (5.19). The

simulation layouts were as follows: (a) LHC, 7 TeV protons, r.m.s. beam angular

divergence θin = 0.5µrad, lcr = 2mm, θb = 20µrad, (110) planes; (b) SPS, 150 GeV

positrons and electrons, θin = 3.5µrad, lcr = 0.29mm, θb = 357µrad, (110) planes; (c)

the same as the previous except the angular divergence θin = 10.5µrad; (d) SPS,

400 GeV protons, θin = 2µrad, lcr = 0.48mm, θb = 170µrad, (110) planes; (e) SLAC,

20.35 GeV positrons, θin = 10µrad, lcr = 0.11mm, θb = 1600µrad, (110) planes; (f) the

same as (b) for (111) planes.
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Figure 5.10: (a) SLAC, 20.35 GeV positrons and electrons, θin = 10µrad,

lcr = 60µm, θb = 400µrad, (110); (b) the same as (g) for (111) planes.

for quasichanneling oscillations and their agreement with the simulations. It is

important to underline that for the case of 7 TeV the quasichanneling oscilla-

tions are revealed not in the zones predicted by Eq. (5.19) but at intersections

of such zones.

It is important to emphasize that the angular difference (5.20-5.21) is on

the left of the peak located at θXdef . The angular distance between the peaks

decreases w.r.t. the angle measured from the channeling peak. In addition, the

particles in next peaks undergo more oscillations and travel longer under over-

barrier state, resulting in increased scattering angle. Because of this, only the

peaks of quasichanneling oscillations near the channeling bump can be observed.

Qualitatively, this is the manifestation of condition (5.22).

One can notice in Figs. 5.9-5.11 the asymmetric peaks due to the particles

that remain channeled at the crystal exit. It is explained by the particles with

large amplitudes in channeling oscillations, keeping the same angles for a long

distance near the potential bottom or top. For a straight crystal this effect

could also be observed.

The angular distribution of particles after their interaction with the crystal

was obtained also with the increased angular divergence of the initial beam by

approximately 3/4θL. The corresponding cases are shown in Figs. 5.9 and 5.11

for 150 GeV. Indeed, too large an angular divergence leads to the disappearance

of the peaks of planar channeling oscillations. As mentioned above, quasichan-

neling oscillations do not directly depend on the angular divergence. Thereby,

such peaks remain visible.

In Fig. 5.9 the four upper plots represent the scaling on energy (5.8-5.9)

introduced in the previous section. The same scaling is represented in Fig. 5.11

for volume reflection.

Such scaling is good for the energies of the same order. In the opposite
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Figure 5.11: The angular distributions of particles after interaction with the

silicon crystal at the volume reflection orientation for the crystal tilt −θb/2.

Vertical lines indicate the zone of quasichanneling oscillations manifestation

calculated by Eqs. (5.19). The simulation layouts were as follows: (a) LHC, 7

TeV protons, r.m.s. beam angular divergence θin = 0.5µrad, lcr = 2mm, θb = 20µrad,

(110) planes; (b) SPS, 150 GeV positrons and electrons, θin = 3.5µrad,

lcr = 0.29mm, θb = 357µrad, (110) planes; (c) the same as (b) for the angular

divergence θin = 10.5µrad for positrons; (d) SPS, 400 GeV protons, θin = 2µrad,

lcr = 0.48mm, θb = 170µrad, (110) planes; (e) SLAC, 20.35 GeV positrons,

θin = 10µrad, lcr = 0.11mm, θb = 1600µrad, (110) planes; (f) the same as (b) for (111)

planes for positrons.
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Figure 5.12: The dependence of the angular distance between the peaks

corresponding to the channeling (a) and quasichanneling (c) oscillations on the

crystal length and the bending angle for the positrons of 20.35 GeV. The (110)

silicon planes are considered. The zone for the dechanneling peaks observation is

formed by (5.3-5.4). (b,d): the optimal zones for the same cases for the

channeling and quasichanneling oscillations respectively, the ratios in (5.3-5.4)

and (5.22, 5.4) exceed two.

case, the radius can approach to the critical one, when the conditions for the

observation of the planar channeling oscillations are not optimal. This is shown

in Fig. 5.9 for channeling and in Fig. 5.11 for volume reflection. The obtained

scaling provides a similar picture for different energies from hundreds of GeV

up to 7 TeV. At the same time, the picture for the case of 20.35 GeV is different

and not so evident because the bending radius approaches to its critical radius.

For the (111) crystal planes the picture observed is analogous to that for

the (110) planes (see Figs. 5.9-5.10). For planar channeling oscillations the

interpeak distance is proportional to the channeling oscillation length in the

larger channel as shown in Fig. 5.2. The quasichanneling oscillations are well

described by formulae (5.19-5.20) if the interplanar distance is determined as a

transverse period being equal to 3.13Å for silicon.
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5.5 Possible experimental set-up to observe planar

channeling and quasichanneling oscillations

In this section we provide information on possible experimental set-ups for

observation of planar channeling and quasichanneling oscillations through ex-

isting accelerators worldwide. In order to span over different energy and charge,

we considered the cases of both positrons and electrons at SLAC (20.35 GeV)

and SPS, CERN (150 GeV) and of electrons at MAMI (855 MeV).

For successful observation, it is very important to choose the proper pa-

rameters for the crystal geometry. They are provided by Eqs. (5.3-5.4) for

channeling oscillations and by Eqs. (5.22, 5.4) for quasichanneling. However,

in a real experiment the angular distance between the peaks should be as large

as possible to better resolve them. All these conditions can be visually com-

bined in the dependence of the distance between the peaks on the crystal length

and bending angle.

Such dependence is shown in Fig. 5.12 for the channeling oscillations at

the channeling orientation of the energy of 20.35 GeV. White crosses mark

the crystal geometry simulated in this paper and presented in Fig. 5.9-5.10.

The conditions (5.3-5.4) determine the area, where the observation of planar

channeling oscillations is allowed. In order to optimize the crystal parameters

the ratios (5.3-5.4) should be safely taken as 2-3 times as much. For equation

(5.3) this choice results in a clearer picture of the peaks. At the same time, for

the ratio (5.4), it provides higher channeling efficiency for better statistics of

the experiment.

An example of optimized zone for crystal geometry for a SLAC case is shown

in Fig. 5.12b. The estimates (5.3-5.4) provide a sufficiently narrow region of

crystal parameters. However, in any case a concrete experimental layout should

be checked by Monte-Carlo trajectory simulations.

Similar conclusion can be inferred by application of Eqs. (5.22, 5.4) to

the plots for quasichanneling oscillations. These dependencies are represented

in Fig. 5.12 for 20.35 GeV. White crosses in the optimal zone indicate the

parameters used in this paper. Quasichanneling oscillations are indeed observed

for our simulations for all the cases considered.

The algorithm for crystal geometry optimization remains the same as for the

quasichanneling oscillations. The only difference is that the initial angular di-

vergence of the beam should be much less important than for planar channeling

oscillations. The angular divergence in our simulations was equal to 10 µrad,

a value which may be experimentally achieved. Thus, the SLAC case satisfies

all the conditions of the observation of planar channeling and quasichanneling
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Figure 5.13: The angular distributions of particles after interaction with the

silicon crystal at the channeling orientation. The simulation layout is: 855 MeV

electrons, θin = 50µrad, lcr = 15µm, θb = 2000µrad, (111) planes.

oscillations.

For the SPS case, the crucial factor is the angular resolution of the detector.

At energies of the order of hundreds GeV, the resolution of at least several

microradians should be provided. At the SPS, additional scattering by air and

the silicon strip detectors contributes to the measurements. This contribution

can be taken into account by including the corresponding r.m.s. scattering

angle θdet to the denominator of (5.3) and (5.22):

∆ϕch

2
√

θ2sc + θ2det
> 1. (5.24)

The angular divergence at the SPS is expected to be higher when using sec-

ondary beams of positrons or electrons. In this case only quasichanneling oscil-

lations can be observed.

For electrons only quasichanneling oscillations can be observed as at the

MAMI microtron (see setup in [133] and the previous chapter). The simulation

of such experiment is shown in Fig. 5.13. The main problem for this experiment

is crystal manufacturing. For operation of sub-GeV energies, a very short and

strongly bent crystal is required, which is at the limit of existing technologies.

(111) crystal planes provide wider angular distance between the peaks.

Thus, they should be preferable. Moreover, it is simpler to manufacture (111)

bent crystal than for any direction, when strong bending is required [146]. The

latter case especially relates to smaller energies of 1 GeV order at which such

crystals were successfully applied [29,30,53] and [A7]. For electrons (111) planes

provide a deeper potential well than the (110) ones. This results in a higher
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Figure 5.14: Angular distribution of electrons obtained at channeling conditions.

The inserted plot provides a zoom in the regions around the quasichanneling

peaks. The blue curves represent gaussian fit for each peak, carried out to obtain

the position of its center. Fits were performed for the angles of deflection of

0.33–0.36 mrad and 0.36–0.39 mrad, respectively.

channeling efficiency which is also preferred.

5.6 Experimental observation of quasichanneling os-

cillations

The experiments were carried out at the SLAC Facility for Advanced Ac-

celerator Experimental Tests (FACET) with both electrons and positrons at

the energy 20.35 GeV, as considered above. The bent silicon crystal, fabricated

at the University of Ferrara [146] was of lcr = 60 ± 1µm length. The (111)

bent planes of this crystal were obtained by using the quasimosaic effect [131].

The bending angle was θb = 402 ± 9µrad as well as, the bending radius was

R = 15.00±0.42cm. The spatial resolution of the e± detector screen was 3.5µm.

The experimental angular distribution of electron beam, deflected at chan-

neling conditions is shown in Fig. 5.14.

At angles slightly below the channeling peak, the quasichanneling oscilla-

tions are visible, as predicted above [A4]. Namely two quasichanneling peaks

can be revealed. The positions of these two peaks were obtained by Gaussian

fit functions as well as the angular distance between them, being 30.5± 2µrad.

This is a bit higher than the theoretical estimate for the distance between the

quasichanneling peaks µrad, based on Eq. (5.19). The agreement, though not

perfectly, is rather convincing to approve the theory by experimental observa-
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Figure 5.15: Angular distribution of positrons obtained at channeling conditions.

The dashed blue line shows the result of simulations.

tions.

The experiment was carried out for positrons at channeling orientation [A6].

At the experimental angular distribution, shown in Fig. 5.15, quasichanneling

oscillations can be clearly revealed at deflection angles of ∼0.2–0.36 mrad. This

angular region, zoomed in, is also shown in Fig. 5.15. The simulations results,

carried out with the CRYSTAL simulation code, shown in Fig. 5.15 as the blue

dashed line, are in good agreement with the experiment.

The experimental peaks were fitted by Gaussian fit to obtain their positions,

see Table 5.1.

Table 5.1: A table showing the positions and uncertainty (σ) of the quasichan-

neling peaks for positrons.

n 2 3 4 5 6 7 8

θpeak (µrad) 299 275 256 241 226 213 201

σpeak (µrad) 4.1 3.5 3.8 3.5 3.6 3.9 3.7

These positions were used as an input to a fitting procedure based on Eq.

(5.19), which should be rewritten for (111) planes in the form:

θXdef n = θd −
√

2d0(n− 1)

R
+ 2ds/R, (5.25)

where ds is the distance between the closest planes, being equal for (111) planes

to d0/4. Therefore the equation (5.25) can be rewritten as:

θXdef n = θd −
√

d0
R

√

2(n− 1) + 1/2. (5.26)
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Figure 5.16: The experimentally obtained positions of the quasichanneling peaks

for positrons along with a fit based on Eq. (5.25).

Consequently, the fit will be carried out on the two parameters, namely θd and

a =
√

d0
R . The peak number starts from n = 2 since the first peak is hidden

inside the channeling peak.

From the fit, one obtains a = (4.39± 0.13)× 10−5 and θd = (368± 1.8)µrad.

The value of θd fits well with the observed position of the channeling peak in

Fig. 4 of 369µrad. The comparison of the fit and data can be seen in Fig.

5.16. From Eq. (5.25), the value of a = (4.57 ± 0.06) × 10−5 is expected,

where the uncertainty comes from the uncertainty on R. Therefore, one can

conclude that theory and experiment show agreement within the experimental

uncertainty. It is important to stress that the peaks, observed experimentally,

are not equidistant and, by this reason, cannot be explained by channeling

oscillations. This is also confirmed by the fact, that the peaks with nearly

the same positions are observed also for electrons and cannot be explained by

channeling oscillations as was mensioned above. Basing on this reason as well

as on agreement between theory and experiment one can conclude that the

observed oscillations must be the quasichanneling oscillations.

The experiment was performed with a β-function of βx = βy = 10m, leading

to an angular divergence in the deflection plane of approximately 20µrad for e+

and 10µrad for e−, with about a factor of 2 systematic uncertainty. For elec-

trons, additional measurements were done for other values of beam divergences,

i.e., beta functions of βx = βy = 20m and βx = βy = 100m. No quasichanneling

oscillations were observed for these values of the β-function for electrons. The

reason is that not only the angular divergence but also the size of the beam also

increases with increasing beta functions. This becomes detrimental to the ob-
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servation of the quasichanneling oscillations, because in fact the value of beam

size, divided by the optical distance from the crystal to the detector ∆σ/Lacc

can exceed the angular distance between the quasichanneling peaks (see Eq.

(5.24), θdet = ∆σ/Lacc), erasing in a such way the quasichanneling oscillations

in the angular distribution. Therefore, for the observation of quasichanneling

oscillations one needs small transverse size of the beam.

One can conclude that the quasichanneling oscillations, presented for the

first time in an experiment, are observed in good agreement with theory and

simulations.

5.7 Possible application of channeling and quasichan-

neling oscillations

By measuring the positions of the quasichanneling peaks, one can extract

information for both bent crystal radius R and orientation θcr = θd − θb in one

single measurement, i.e., for one goniometer position. Indeed, existing methods

require the rotation of the goniometer at different positions around channeling

to measure the crystal-to-beam orientation and consequent analysis of the beam

deflection efficiency, which is not always so straightforward. The knowledge of

the position of the quasichanneling peaks would improve the alignment pro-

cedure between the bent crystal planes and the beam direction, even for large

misalignment, in high-energy accelerators, where the crystal can be exploited as

a passive and inexpensive tool for beam extraction or collimation. Furthermore,

with the use of a bent crystal, one may provide a direct measurement of the

quasichanneling oscillation wavelength, in analogy with the channeling one (λ),

as a function of the distance between quasichanneling peaks: λqch = R∆ϕqch.

The same can be done with channeling oscillations: λch = R∆ϕch. Such values

may provide an insight to the interplanar potential shape and strength and

on the dynamics of over-barrier particles, thus giving important information

for applications in high-energy particle accelerators for either beam steering or

intense electromagnetic radiation generation.

5.8 Conclusions

The effects of planar channeling and quasichanneling oscillations in the

deflection angle distribution of particles passed through a bent crystal has been

predicted. Both of them possess a fine structure in the angular distribution

as visualized by Monte Carlo simulations for a wide range of energies. The
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effect of quasichanneling oscillations was observed experimentally for the first

time. In addition, the effect of ionization losses excess over the amorphous level

was obtained in simulations at ionization losses map in which the trajectory

correlations, transforming into channeling oscillations in the deflection angle

distribution were clearly revealed.

The theoretical interpretation of both kinds of oscillations was proposed.

Quasichanneling oscillations appear near the direction at which channeling

particles leave the crystal. They arise due to the correlations of over-barrier

oscillation lengths of dechanneled particles. Channeling oscillations can be ob-

served in all over the angular range of deflected particles after interaction with

a crystal. This effect arises from correlated dechanneling of particles moving

along phase-correlated trajectories under channeling mode. An equation for

the angular positions of quasichanneling peaks was found. It demonstrates the

independence of peak position on charge sign and energy.

Since phase correlation for channeled particles is conserved only for posi-

tive particles, the channeling oscillation peaks can not be observed for nega-

tive charges. At the same time, since both negatively and positively charged

particles may experience over-barrier oscillations, the effect of quasichanneling

oscillations can be observed for both of them.

The possibility to observe both channeling and quasichanneling oscillations

is limited by incoherent scattering of particles under over-barrier states. Both

of them can be observed if only the r.m.s. angle of incoherent scattering is

twice smaller than the interpeak angular intervals. The angular resolution of

particle detectors is crucial for the observation of both types of oscillations.

However, the low angular divergence of the incident beam is necessary only for

an observation of the channeling oscillations.

The optimal conditions for experimental observation of both channeling and

quasichanneling oscillations are also proposed. These conditions are applied to

elaborate the optimal values of crystal thickness and bending angle (radius) at

SLAC, SPS, MAMI and LHC. A comparison of (110) and (111) planar crystal

orientation reveals the higher interpeak distance and higher electron channeling

efficiency in the case of the latter. (111) orientation is also preferable from the

point of view of strong bending of thin crystals to observe the predicted effects

at the SLAC and MAMI energies.

Quasichanneling oscillations were observed experimentally at SLAC for both

electrons and positrons at the energy of 20.35 GeV for (111) bent crystal planes.

For positrons the peak positions were verified by fit, provided by theoretical

model, which gave the values being in agreement with theory within the exper-

imental uncertainty.
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Similarly to channeling oscillations, which are used in low-energy RBS ex-

periments to assess the quality of a crystal, channeling and quasichanneling

oscillations could be used to determine the precision of alignment of a high-

energy beam with a crystal. In fact, the pattern of the distribution of particles

after interaction with a bent crystal is highly sensitive to the beam-to-crystal

alignment. Moreover, the interpeak distance between both dechanneling and

quasichanneling peaks is proportional to the oscillation length of channeling

and quasichanneling oscillations respectively. This can give an insight to the

interplanar potential shape and strength and on the dynamics of channeling

and over-barrier particles. All this information can be used for all the applica-

tions for which bent crystals are used in accelerators, such as beam collimation,

extraction and e.m. radiation generation.
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CONCLUSIONS

The work in this thesis has been dedicated to the coherent effects of beam

steering in bent crystals and their application at high energy accelerators. These

effects were studied both theoretically and by simulations. Some of them were

observed experimentally, analysed as well as critically compared with theoretical

predictions and simulations.

The effects of channeling and volume reflection were simulated for 50 TeV

protons, i.e. at the energy of the Future Circular Collider. For volume reflection

angle a model independent on the particle energy has being presented. More-

over a number of modifications of these effects were studied. Namely volume

reflection in a sequence of bent crystals, multiple volume reflection in one bent

crystal as well as the combination of both was simulated. In addition a theo-

retical model to optimize the parameters of the crystal geometry as well as its

orientation w.r.t. the initial beam direction has been introduced. The effects

were simulated not only for silicon, but also for more high-Z crystals, namely

germanium and tungsten. The maximal angle of deflection, comparable with

the angle of deflection under channeling conditions has been achieved.

Channeling in skew planes provides considerably higher deflection angle of

non-channeling particles by application of MVROC instead of volume reflection.

A bent crystal in fact works as a beam splitter, deflecting charged particles in

two directions. The application of a crystal with a cut allows one to increase

the channeling efficiency on about 10% for the cases considered.

The double collimation scheme has been suggested for the Future Circular

Collider, basing on the coherent effects studied in this work. This collimation

scheme includes two crystals. The first one is suggested as a beam splitter,

deflecting most particles under the channeling conditions into the collimator as

well as the remaining part onto the second crystal. The main idea of such col-

limation setup is interception of most of halo particles during only one passage

of the collimation insertion, namely up to 99.9%.

Channeling and volume reflection have been also studied for negatively

charged particles, namely for 855 MeV electrons at Mainzer Mikrotron MAMI.

The experimental results demonstrated a record channeling efficiency of neg-

ative particles in a silicon crystal, i.e. close to 40%. Moreover beam steering

of sub-GeV eletrons in germanium bent crystal has been demonstrated for the

very first time.

Dechanneling length and channeling efficiency as well as volume reflection

angle was measured in dependence of the value of crystal curvature for both sil-

icon and germanium bent crystals. It was done by application of the innovative
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pieso-activated dynamical holder, allowing one to bend a crystal inside an accel-

erator facility without vacuum breaking. The results were critically compared

with both theoretical model and simulations, showing a good agreement. The

influence of initially non-channeled particles on the process of dechanneling,

causing a reduction of the dechanneling length in case the crystal thicknesses

are comparable with the dechanneling length, was also exposed.

These results, are of interest for applications, such as generation of e.m.

radiation in higher Z-materials crystals. Moreover the can be extrapolated

on charged particle steering at higher energies, for instance for crystal-based

collimation/extraction at future electrons accelerators.

The effects of planar channeling and quasichanneling oscillations in the de-

flection angle distribution have been predicted both theoretically and by simu-

lations. Both effects allow one to observe directly the particle oscillations under

the channeling and quasichanneling conditions, being trasformed in the angular

distribution into a series of peaks equidistant and non-equidistant respectively.

The theoretical model of both effects has been introduced as well as experi-

mental conditions have been formulated. In addition, the effect of excess of

the ionization losses over the amorphous level for (110) planes, has been high-

lighted. It is directly connected with the effect of planar channeling oscillations,

being also another representation of the latter.

The effect of planar quasichanneling oscillations in the deflection angle dis-

tribution has been observed experimentally at the FACET accelerator facility at

SLAC for both electrons and positrons of 20.35 GeV. The experimental results

are in agreement with the theoretical model proposed. Moreover the proce-

dure of fitting of crystal alignment and geometry, based on the peaks positions

was carried out. This procedure represents the measuring of the alignment by

using only one angular distribution of deflected beam, being useful at high en-

ergy accelerators, to align a bent crystal more precisely. Moreover, both planar

channeling and quasichanneling oscillations can give an insight to the inter-

planar potential characteristics as well as on the dynamics of channeling and

over-barrier particles. These applications are also relevent for beam steering,

and in particular for crystal-based collimation and beam extraction at modern

and future accelerators and colliders.
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