The construction sector is among the major players responsible for global energy consumption and therefore related emissions, both because of the constantly increasing indoor air quality standard which requires increasingly higher energy demands as well as the great share of historical buildings which are now obsolete and are not up to date with current regulations. Phase change materials (PCMs) applied on the building envelope represent a feasible possibility to improve the performance of existing buildings, also the historical ones, increasing their thermal iner-tia without violating any legal restriction or causing further alterations to the structure. More specifically, focus of this research was on the addition of a granular paraffin PCM into a lime-based plaster. Experimental tests at lab scale and numerical simulations with COMSOL Multiphysics were carried out to characterize the plasters realized, namely one reference lime-based plaster and one with incorporated 10% by mass of granular PCM (named REFp and PCMp, respectively). The behavior of these plasters applied on the exterior side of a wall was then simulated and compared in terms of temperatures and heat fluxes. However, considering that the esti-mated thermal conductivity of the reference lime-based plaster was lower than the values found in literature, the simulations were carried out considering an additional plaster, namely a lime-based plaster (renamed LITp), whose properties were found in literature and considered quite representative of a consistent share of existing historical buildings. Great improvements were ob-served from the application of PCM into the plaster, with reductions of the incoming energy between 9% and 18%.

Granular PCM-Enhanced Plaster for Historical Buildings: Experimental Tests and Numerical Studies

Baccega, Eleonora
Primo
;
Bottarelli, Michele
Ultimo
2022

Abstract

The construction sector is among the major players responsible for global energy consumption and therefore related emissions, both because of the constantly increasing indoor air quality standard which requires increasingly higher energy demands as well as the great share of historical buildings which are now obsolete and are not up to date with current regulations. Phase change materials (PCMs) applied on the building envelope represent a feasible possibility to improve the performance of existing buildings, also the historical ones, increasing their thermal iner-tia without violating any legal restriction or causing further alterations to the structure. More specifically, focus of this research was on the addition of a granular paraffin PCM into a lime-based plaster. Experimental tests at lab scale and numerical simulations with COMSOL Multiphysics were carried out to characterize the plasters realized, namely one reference lime-based plaster and one with incorporated 10% by mass of granular PCM (named REFp and PCMp, respectively). The behavior of these plasters applied on the exterior side of a wall was then simulated and compared in terms of temperatures and heat fluxes. However, considering that the esti-mated thermal conductivity of the reference lime-based plaster was lower than the values found in literature, the simulations were carried out considering an additional plaster, namely a lime-based plaster (renamed LITp), whose properties were found in literature and considered quite representative of a consistent share of existing historical buildings. Great improvements were ob-served from the application of PCM into the plaster, with reductions of the incoming energy between 9% and 18%.
2022
Baccega, Eleonora; Bottarelli, Michele
File in questo prodotto:
File Dimensione Formato  
20220128_ENERGIES.pdf

accesso aperto

Descrizione: Full text editoriale
Tipologia: Full text (versione editoriale)
Licenza: Creative commons
Dimensione 8.09 MB
Formato Adobe PDF
8.09 MB Adobe PDF Visualizza/Apri

I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/2474513
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 5
social impact