We consider the sharp Sobolev-Poincaré constant for the embedding of W01,2(Ω) into Lq(Ω). We show that such a constant exhibits an unexpected dual variational formulation, in the range 1 < q < 2. Namely, this can be written as a convex minimization problem, under a divergence-type constraint. This is particularly useful in order to prove lower bounds. The result generalizes what happens for the torsional rigidity (corresponding to q = 1) and extends up to the case of the first eigenvalue of the Dirichlet-Laplacian (i.e., to q = 2).

Convex duality for principal frequencies

Brasco L.
Primo
2022

Abstract

We consider the sharp Sobolev-Poincaré constant for the embedding of W01,2(Ω) into Lq(Ω). We show that such a constant exhibits an unexpected dual variational formulation, in the range 1 < q < 2. Namely, this can be written as a convex minimization problem, under a divergence-type constraint. This is particularly useful in order to prove lower bounds. The result generalizes what happens for the torsional rigidity (corresponding to q = 1) and extends up to the case of the first eigenvalue of the Dirichlet-Laplacian (i.e., to q = 2).
2022
Brasco, L.
File in questo prodotto:
File Dimensione Formato  
bra_duality_final_rev.pdf

solo gestori archivio

Descrizione: Post-print
Tipologia: Post-print
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 405.01 kB
Formato Adobe PDF
405.01 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
10.3934_mine.2022032.pdf

accesso aperto

Descrizione: Full text editoriale
Tipologia: Full text (versione editoriale)
Licenza: Creative commons
Dimensione 395.93 kB
Formato Adobe PDF
395.93 kB Adobe PDF Visualizza/Apri

I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/2472216
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
social impact