We consider the sharp Sobolev-Poincaré constant for the embedding of W01,2(Ω) into Lq(Ω). We show that such a constant exhibits an unexpected dual variational formulation, in the range 1 < q < 2. Namely, this can be written as a convex minimization problem, under a divergence-type constraint. This is particularly useful in order to prove lower bounds. The result generalizes what happens for the torsional rigidity (corresponding to q = 1) and extends up to the case of the first eigenvalue of the Dirichlet-Laplacian (i.e., to q = 2).
Convex duality for principal frequencies
Brasco L.
Primo
2022
Abstract
We consider the sharp Sobolev-Poincaré constant for the embedding of W01,2(Ω) into Lq(Ω). We show that such a constant exhibits an unexpected dual variational formulation, in the range 1 < q < 2. Namely, this can be written as a convex minimization problem, under a divergence-type constraint. This is particularly useful in order to prove lower bounds. The result generalizes what happens for the torsional rigidity (corresponding to q = 1) and extends up to the case of the first eigenvalue of the Dirichlet-Laplacian (i.e., to q = 2).File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
bra_duality_final_rev.pdf
solo gestori archivio
Descrizione: Post-print
Tipologia:
Post-print
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
405.01 kB
Formato
Adobe PDF
|
405.01 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
10.3934_mine.2022032.pdf
accesso aperto
Descrizione: Full text editoriale
Tipologia:
Full text (versione editoriale)
Licenza:
Creative commons
Dimensione
395.93 kB
Formato
Adobe PDF
|
395.93 kB | Adobe PDF | Visualizza/Apri |
I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.