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Abstract: We consider the sharp Sobolev-Poincaré constant for the embedding of W1,2
0 (Ω) into Lq(Ω).

We show that such a constant exhibits an unexpected dual variational formulation, in the range 1 < q <
2. Namely, this can be written as a convex minimization problem, under a divergence–type constraint.
This is particularly useful in order to prove lower bounds. The result generalizes what happens for
the torsional rigidity (corresponding to q = 1) and extends up to the case of the first eigenvalue of the
Dirichlet-Laplacian (i.e., to q = 2).
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1. Introduction

1.1. Overview

Let Ω ⊂ RN be an open set, we denote by W1,2
0 (Ω) the completion of C∞0 (Ω) with respect to the

Sobolev norm
‖ϕ‖W1,2(Ω) = ‖ϕ‖L2(Ω) + ‖∇ϕ‖L2(Ω;RN ), for every ϕ ∈ C∞0 (Ω).

In what follows, we will always consider for simplicity sets with finite measure. This guarantees that
we have at our disposal the Poincaré inequality

CΩ

∫
Ω

|ϕ|2 dx ≤
∫

Ω

|∇ϕ|2 dx, for every ϕ ∈ W1,2
0 (Ω).
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Consequently, the space W1,2
0 (Ω) can be equivalently endowed with the norm

‖ϕ‖W1,2
0 (Ω) := ‖∇ϕ‖L2(Ω;RN ).

For 1 ≤ q ≤ 2, we consider the generalized principal frequency

λ1(Ω; q) := min
ϕ∈W1,2

0 (Ω)\{0}

∫
Ω

|∇ϕ|2 dx(∫
Ω

|ϕ|q dx
) 2

q

,

already considered in [26] and more recently in [4, 13, 35], among others. The fact that the minimum
above is attained in W1,2

0 (Ω) follows from the compactness of the embedding W1,2
0 (Ω) ↪→ Lq(Ω). The

latter holds true since we are assuming that Ω has finite measure, see [5, Theorem 2.8].
Two important cases deserve to be singled-out from the very beginning: q = 1 and q = 2. In the

first case, this quantity actually coincides with the reciprocal of the so-called torsional rigidity of Ω

1
λ1(Ω; 1)

= T (Ω) := max
ϕ∈W1,2

0 (Ω)\{0}

(∫
Ω

|ϕ| dx
)2

∫
Ω

|∇ϕ|2 dx
.

For q = 2, on the other hand, the quantity λ1(Ω; 2) is nothing but the first eigenvalue of the Dirichlet-
Laplacian or principal frequency of Ω. This is the smallest real number λ such that the Helmholtz
equation

−∆u = λ u, in Ω,

admits a nontrivial weak solution in W1,2
0 (Ω). For simplicity, we will simply denote this quantity by

λ1(Ω).
In general, the quantity λ1(Ω; q) can not be explicitly computed. It is then quite useful to seek for

(possibly sharp) estimates in terms of geometric quantities of the set Ω. Some particular instances of
results in this direction are given by:

• the Faber-Krahn inequality (see for example [26, Theorem 2])

λ1(Ω; q) ≥
 λ1(B; q)

|B|1−
2
N −

2
q

 |Ω|1− 2
N −

2
q ,

which is valid for every open set Ω ⊂ RN with finite measure. Here B is any N−dimensional open
ball;

• the Hersch-Makai–type inequality (see [8, Theorem 1.1])

λ1(Ω; q) ≥
(π2,q

2

)2 |Ω|
q−2

q

R2
Ω

,
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which is valid for every open bounded convex set Ω ⊂ RN . Here RΩ is the inradius, i.e., the radius
of a largest ball contained in Ω and π2,q is the one-dimensional constant defined by

π2,q = inf
ϕ∈W1,2

0 ((0,1))\{0}

‖ϕ′‖L2((0,1))

‖ϕ‖Lq((0,1))
.

This inequality is the extension to the range 1 ≤ q ≤ 2 of [28, equation (3’)] by Makai (case
q = 1) and of [22, Théorème 8.1] by Hersch (case q = 2);

• the Pólya–type inequality (see [6, Main Theorem])

λ1(Ω; q) ≤
(π2,q

2

)2
 P(Ω)

|Ω|
1
2 + 1

q

2

,

which is again valid for open bounded convex sets. Here P(Ω) stands for the perimeter of Ω. This
inequality generalizes the original result by Pólya [31] for the cases q = 1 and q = 2.

We point out that all the previous estimates are sharp. All the exponents appearing above are of course
dictated by scale invariance.

As a general rule, we can assert that lower bounds on λ1(Ω; q) are harder to obtain with respect to
upper bounds, since every generalized principal frequency is defined as an infimum. It would then be
interesting to investigate whether λ1(Ω; q) admits a sort of “dual” equivalent formulation, in terms of a
supremum. This is the main goal of the present paper.

1.2. Towards duality

At this aim, it is interesting to have a closer look at the case q = 1. It is well-known that the torsional
rigidity can be equivalently rewritten as an unconstrained concave maximization problem, i.e.,

max
ϕ∈W1,2

0 (Ω)

{
2

∫
Ω

ϕ dx −
∫

Ω

|∇ϕ|2 dx
}

= T (Ω). (1.1)

As such, it admits in a natural way a dual convex minimization problem

min
φ∈L2(Ω;RN )

{∫
Ω

|φ|2 dx : −div φ = 1 in Ω

}
= max

ϕ∈W1,2
0 (Ω)

{
2

∫
Ω

ϕ dx −
∫

Ω

|∇ϕ|2 dx
}

= T (Ω),
(1.2)

which gives yet another equivalent definition of torsional rigidity. Here the divergence constraint has
to be intended in distributional sense, i.e.,∫

Ω

〈φ,∇ϕ〉 dx =

∫
Ω

ϕ dx, for every ϕ ∈ C1
0(Ω). (1.3)

By means of a standard density argument, it is easily seen that we can enlarge the class of competitors
in (1.3) to the whole W1,2

0 (Ω), since φ ∈ L2(Ω;RN).
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For a better understanding of the contents of this paper, it may be useful to recall the proof of (1.2).
At first, one observes that for every admissible vector field and every ϕ ∈ W1,2

0 (Ω), we have

2
∫

Ω

ϕ dx −
∫

Ω

|∇ϕ|2 dx = 2
∫

Ω

〈φ,∇ϕ〉 dx −
∫

Ω

|∇ϕ|2 dx,

by virtue of (1.3). We can now use Young’s inequality

2 〈φ,∇ϕ〉 − |∇ϕ|2 ≤ |φ|2.

By integrating this inequality, from the identity above we get

2
∫

Ω

ϕ dx −
∫

Ω

|∇ϕ|2 dx ≤
∫

Ω

|φ|2 dx.

The arbitrariness of both ϕ and φ automatically gives

max
ϕ∈W1,2

0 (Ω)

{
2

∫
Ω

ϕ dx −
∫

Ω

|∇ϕ|2 dx
}
≤ min

φ∈L2(Ω;RN )

{∫
Ω

|φ|2 dx : −div φ = 1 in Ω

}
.

On the other hand, by taking ϕ = w to be the optimal function for the problem on the left-hand side,
this satisfies the relevant Euler-Lagrange equation. The latter is given by

−∆w = 1, in Ω.

Thus φ0 = ∇w is an admissible vector field and we have∫
Ω

|φ0|
2 dx = 2

∫
Ω

〈∇w, φ0〉 dx −
∫

Ω

|∇w|2 = 2
∫

Ω

w dx −
∫

Ω

|∇w|2 dx.

This proves that

min
φ∈L2(Ω;RN )

{∫
Ω

|φ|2 dx : −div φ = 1 in Ω

}
≤ max

ϕ∈W1,2
0 (Ω)

{
2

∫
Ω

ϕ dx −
∫

Ω

|∇ϕ|2 dx
}
,

as well. Thus (1.2) holds true and we also have obtained that the unique (by strict convexity) minimal
vector field φ0 ∈ L2(Ω;RN) must be of the form

φ0 = ∇w,

with w being the unique W1,2
0 (Ω) solution of −∆w = 1. In conclusion, getting back to the notation

λ1(Ω; 1), we obtain the following dual characterization of the relevant generalized principal frequency

1
λ1(Ω; 1)

= min
φ∈L2(Ω;RN )

{∫
Ω

|φ|2 dx : −div φ = 1 in Ω

}
. (1.4)
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1.3. Main results

The main result of the present paper asserts that the dual characterization (1.4) is not an isolated
exception. Actually, it is possible to prove that

1
λ1(Ω; q)

,

coincides with the minimum of a constrained convex minimization problem, for the whole range 1 ≤
q ≤ 2. The deep reason behind this result is a hidden convex structure of the problem which defines
λ1(Ω; q), see Remark 4.2 below. Such a convex structure, which apparently is still not very popular,
fails for q > 2 and this explains why our result has 1 ≤ q ≤ 2 as the natural range of validity.

In order to precisely state the result, we need at first to introduce the following convex lower
semicontinuous function Gq : R × RN → [0,+∞], defined for 1 < q ≤ 2 by:

Gq(s, ξ) =



|ξ|q

|s|q−1 , if ξ ∈ RN , s < 0,

0, if s = 0, ξ = 0,

+∞, otherwise,

(1.5)

see [30, Lemma 5.17]. We then distinguish between the cases q < 2 and q = 2.

Theorem 1.1 (Sub-homogeneous case). Let 1 < q < 2 and let Ω ⊂ RN be an open set, with finite
measure. If we set

A(Ω) =
{
( f , φ) ∈ L1

loc(Ω) × L2
loc(Ω;RN) : −div φ + f ≥ 1 in Ω

}
,

then we have
1

λ1(Ω; q)
= (q − 1)(q−1) 2

q inf
( f ,φ)∈A(Ω)

∥∥∥∥Gq( f , φ)
∥∥∥∥ 2

q

L
2

2−q (Ω)
, (1.6)

where Gq is defined in (1.5). Moreover, if w ∈ W1,2
0 (Ω) denotes the unique positive solution of

max
ϕ∈W1,2

0 (Ω)

{
2
q

∫
Ω

|ϕ|q dx −
∫

Ω

|∇ϕ|2 dx
}
,

we get that the pair ( f0, φ0) defined by

φ0 =
∇w
wq−1 and f0 = −(q − 1)

|∇w|2

wq ,

is a minimizer for the problem in (1.6).

Remark 1.2. Observe that the previous result is perfectly consistent with the case q = 1. Indeed, by
formally taking the limit as q goes to 1 in the statement above, the role of the dual variable f becomes
immaterial and we get back (1.2), together with the optimality condition φ0 = ∇w.

For the limit case q = 2, corresponding to the first eigenvalue of the Dirichlet-Laplacian, we have
the following dual characterization.
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Theorem 1.3 (Homogeneous case). Let Ω ⊂ RN be an open set, with finite measure. If we set

A(Ω) =
{
( f , φ) ∈ L1

loc(Ω) × L2
loc(Ω;RN) : −div φ + f ≥ 1 in Ω

}
,

then we have
1

λ1(Ω)
= inf

( f ,φ)∈A(Ω)

∥∥∥∥G2( f , φ)
∥∥∥∥

L∞(Ω)
, (1.7)

where G2 is defined in (1.5). Moreover, if we denote by U ∈ W1,2
0 (Ω) any positive first eigenfunction of

Ω, we get that the pair ( f0, φ0) defined by

φ0 =
1

λ1(Ω)
∇U
U

and f0 = −
1

λ1(Ω)
|∇U |2

U2 ,

is a minimizer for the problem in (1.7).

Remark 1.4. It may be worth recalling that the existence of a (sort of) dual formulation for λ1 is not a
complete novelty. A related result can be traced back in the literature and attributed to the fundamental
contributions of Protter and Hersch. This is called maximum principle for λ1 and reads as follows

λ1(Ω) = max
φ

inf
x∈Ω

[
divφ(x) − |φ(x)|2

]
,

under suitable regularity assumptions on Ω and on the admissible vector fields. It is not difficult to see
that

φ0(x) = −
∇U
U
,

is a maximizer for the previous problem, at least formally. Here U is again any positive first
eigenfunction of Ω. We refer to the paper [21] by Hersch for a presentation of this result and for a
detailed discussion about its physical interpretation.

Remark 1.5. As a last observation, we wish to point out the interesting papers [18] and [19], where yet
another equivalent characterization for the torsional rigidity T (Ω) is obtained, when Ω ⊂ R2 is a simply
connected open set. Such a characterization is in terms of a minimization problem among holomorphic
functions (see [18, Theorem 1.2]) and thus it is suitable for giving upper bounds on T (Ω) (see [19]).

1.4. Plan of the paper

We start by exposing some preliminary facts in Section 2. In Section 3 we consider a certain convex
function and show that its Legendre-Fenchel transform is related to the function Gq above. The core of
the paper is Section 4, where Proposition 4.1 permits to rewrite the value λ1(Ω; q) as an unconstrained
concave maximization problem, exactly as in the case of the torsional rigidity. We can then prove our
main results in Section 5. Finally, in the last section we briefly show some applications of our results
to geometric estimates for principal frequencies.

2. Preliminaries

We first recall that it is possible to rewrite the minimization problem which defines λ1(Ω; q) as an
unconstrained optimization problem, in the regime 1 ≤ q < 2. This generalizes formula (1.1). The
proof is standard, we include it for completeness.
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Proposition 2.1. Let 1 ≤ q < 2 and let Ω ⊂ RN be an open set, with finite measure. Then we have

max
ϕ∈W1,2

0 (Ω)

{
2
q

∫
Ω

|ϕ|q dx −
∫

Ω

|∇ϕ|2 dx
}

=
2 − q

q

(
1

λ1(Ω; q)

) q
2−q

.

Moreover, the maximization problem on the left-hand side admits a unique non-negative solution w,
which has the following properties

w ∈ L∞(Ω) and
1
w
∈ L∞loc(Ω).

Proof. Existence of a maximizer follows by a standard application of the Direct Method in the Calculus
of Variations. The fact that a non-negative maximizer exists is a consequence of the fact that the
functional is even, thus we can always replace ϕ by |ϕ| without decreasing the energy.

We also observe that for ϕ ∈ W1,2
0 (Ω) \ {0} and t > 0, the quantity

2
q

tq
∫

Ω

|ϕ|q dx − t2
∫

Ω

|∇ϕ|2 dx,

is strictly positive for t sufficiently small. This shows that

max
ϕ∈W1,2

0 (Ω)

{
2
q

∫
Ω

|ϕ|q dx −
∫

Ω

|∇ϕ|2 dx
}
> 0,

and thus ϕ ≡ 0 can not be a maximizer. Observe that the same argument, together with the locality of
the functional, imply that for any maximizer w we must have w . 0 on every connected component of
Ω. By coupling this information with the optimality condition, we get that any non-negative maximizer
w must be a nontrivial weak solution of the Euler-Lagrange equation

−∆w = wq−1, in Ω.

In particular, w is a weakly superharmonic function and by the strong minimum principle, we get that
1/w ∈ L∞loc(Ω). The fact that w ∈ L∞(Ω) follows from standard Ellipic Regularity.

Finally, uniqueness of the positive maximizer can be found in [7, Lemma 2.2], where the uniqueness
result of [9, Theorem 1] is extended to the case of open sets, not necessarily smooth.

In order to prove the claimed equality between the extremum values, it is sufficient to exploit the
different homogeneities of the two integrals and the fact that the maximum problem is equivalently
settled on W1,2

0 (Ω) \ {0}. We then have

max
ϕ∈W1,2

0 (Ω)

{
2
q

∫
Ω

|ϕ|q dx −
∫

Ω

|∇ϕ|2 dx
}

= max
ϕ∈W1,2

0 (Ω)\{0},t>0

{
2
q

tq
∫

Ω

|ϕ|q dx − t2
∫

Ω

|∇ϕ|2 dx
}
.

It is easily seen that, for every ϕ ∈ W1,2
0 (Ω) \ {0} the function

t 7→
2
q

tq
∫

Ω

|ϕ|q dx − t2
∫

Ω

|∇ϕ|2 dx,

Mathematics in Engineering Volume 4, Issue 4, 1–28.
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is maximal for

t0 =


∫

Ω

|ϕ|q dx∫
Ω

|∇ϕ|2 dx


1

2−q

.

With such a choice of t, we get

2
q

tq
0

∫
Ω

|ϕ|q dx − t2
0

∫
Ω

|∇ϕ|2 dx =


(∫

Ω

|ϕ|q dx
) 2

q

∫
Ω

|∇ϕ|2 dx



q
2−q

2 − q
q

.

By recalling the definition of λ1(Ω; q), we get the desired conclusion. �

We also record the following technical result: this will be useful somewhere in the paper. More
sophisticated results about the dependence on q of the quantity λ1(Ω; q) can be found in [1, Theorem
1] and [17].

Lemma 2.2. Let Ω ⊂ RN be an open set, with finite measure. Then we have

lim
q→1+

λ1(Ω; q) = λ1(Ω; 1) and lim
q→2−

λ1(Ω; q) = λ1(Ω).

Proof. For 1 < q < 2 and for every ϕ ∈ W1,2
0 (Ω) \ {0}, we have by Hölder’s inequality∫

Ω

|∇ϕ|2 dx(∫
Ω

|ϕ|q dx
) 2

q

≥ |Ω|1−
2
q

∫
Ω

|∇ϕ|2 dx∫
Ω

|ϕ|2 dx
≥ |Ω|1−

2
q λ1(Ω).

By taking the infimum over ϕ, this leads to

λ1(Ω; q) ≥ |Ω|1−
2
q λ1(Ω).

On the other hand, if U ∈ W1,2
0 (Ω) is any minimizer for λ1(Ω), then we have

λ1(Ω; q) ≤

∫
Ω

|∇U |2 dx(∫
Ω

|U |q dx
) 2

q

=

∫
Ω

|U |2 dx(∫
Ω

|U |q dx
) 2

q

λ1(Ω).

The last two displays eventually prove the desired result for q converging to 2. The other result can be
proved in exactly the same way. �

Remark 2.3. The assumption on the finiteness of the measure is sufficient, but in general not necessary,
for the previous result to hold. However, as observed in [6, Remark 2.2], for a general open set Ω ⊂ RN

it may happen that
lim sup

q→2−
λ1(Ω; q) < λ1(Ω).
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3. A convex function

In order to prove the main result of this paper, we will need to study a particular convex function
Fq : R × RN → [0,+∞] and its Legendre-Fenchel transform

F∗q(s, ξ) = sup
(t,x)∈R×RN

[
s t + 〈ξ, x〉 − Fq(t, x)

]
.

We refer to the classical monograph [32] for the basic properties of this transform.

Lemma 3.1. Let 1 < q < 2, we consider the convex lower semicontinuous function F : R × RN →

R ∪ {+∞} defined by

Fq(t, x) =


|x|2 t

2
q−2, if x ∈ RN , t > 0,

0, if t = 0, x = 0,
+∞, otherwise.

Then its Legendre-Fenchel transform is given by the convex lower semicontinuous function

F∗q(s, ξ) =


αq |ξ|

2 q
2−q |s|

2 (1−q)
2−q , if ξ ∈ RN , s < 0,

0, if s = 0, ξ = 0,
+∞, otherwise,

where the constant αq is given by

αq =
2 − q
2 q

(
q − 1

q

) 2 (q−1)
2−q

(
1
2

) q
2−q

.

Proof. We divide the proof in various parts, according to the claim that we are going to prove.

Lower semicontinuity. In order to verify the semicontinuity of Fq, we need to prove that the epigraph

epi (Fq) =
{
((t, x); `) ∈ RN+1 × R : Fq(t, x) ≤ `

}
,

is a closed set. We take {((tn, xn); `n)}n∈N ⊂ epi (Fq) such that

lim
n→∞

tn = t, lim
n→∞

xn = x, lim
n→∞

`n = `.

By using the definition of Fq and that of epigraph, the fact that

Fq(tn, xn) ≤ `n, for every n ∈ N, (3.1)

automatically entails that
{(tn, xn)}n∈N ⊂

(
(0,+∞) × RN

)
∪ {(0, 0)}.

This in particular implies that the limit point t is such that t ≥ 0. The same can be said for `, since Fq

always takes positive values.
We now observe that if t > 0, we would have tn > 0 for n large enough. In this case, we can simply

pass to the limit in (3.1) and get

Fq(t, x) = |x|2 t
2
q−2 = lim

n→∞
|xn|

2 t
2
q−2
n ≤ lim

n→∞
`n = `,

Mathematics in Engineering Volume 4, Issue 4, 1–28.



10

thus proving that ((t, x); `) ∈ epi (Fq).
Let us now suppose that t = 0 and assume by contradiction that ((0, x); `) < epi (Fq). This means

that
Fq(0, x) > `.

By recalling that ` ≥ 0 and that Fq(0, 0) = 0, this would automatically gives that x , 0. On the other
hand, by (3.1), we get that

either tn = 0 and xn = 0 or tn > 0 and |xn|
2 ≤ `n t

2− 2
q

n .

This entails that
x = lim

n→∞
xn = 0,

which gives a contradiction. This finally proves that the epigraph is closed.

Convexity. We need to prove that for every t0, t1 ∈ R, x0, x1 ∈ R
N and λ ∈ [0, 1], we have

Fq(λ t0 + (1 − λ) t1, λ x0 + (1 − λ) x1) ≤ λ Fq(t0, x0) + (1 − λ) Fq(t1, x1). (3.2)

We observe that for t0, t1 ≤ 0, every x0, x1 ∈ R
N \ {0} and every λ ∈ [0, 1], we trivially have (3.2), since

both terms on the right-hand side are equal to +∞. We are thus confined to prove (3.2) for

(t0, x0), (t1, x1) ∈
(
(0,+∞) × RN

)
∪ {(0, 0)}.

Moreover, if at least one between (t0, x0) and (t1, x1) coincides with (0, 0), then again the desired
inequality follows by a straighforward computation. Finally, we can assume that

(t0, x0), (t1, x1) ∈ (0,+∞) × RN .

We introduce the function
F2(t, x) = |x|2 t−1, if x ∈ RN , t > 0,

and we observe that for every 1 < q < 2 we have

Fq(t, x) = F2

(
t2− 2

q , x
)
, for (t, x) ∈ (0,+∞) × RN .

By using that t 7→ F2(t, x) is decreasing, that t 7→ t2− 2
q is concave (since 1 < q < 2) and that (t, x) 7→

F2(t, x) is convex (see for example [30, Lemma 5.17]), we get

Fq(λ t0 + (1 − λ) t1, λ x0 + (1 − λ) x1) = F2

(
(λ t0 + (1 − λ) t1)2− 2

q , λ x0 + (1 − λ) x1

)
≤ F2

(
λ t

2− 2
q

0 + (1 − λ) t
2− 2

q

1 , λ x0 + (1 − λ) x1

)
≤ λ F2

(
t
2− 2

q

0 , x0

)
+ (1 − λ) F2

(
t
2− 2

q

1 , x1

)
= λ Fq(t0, x0) + (1 − λ) Fq(t1, x1),

as desired.
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Computation of F∗q. We now come to the computation of the Legendre-Fenchel transform. This is
lengthy but elementary. We first observe that Fq is positively 2/q−homogeneous, that is for every τ > 0
we have

Fq(τ t, τ x) = τ
2
q Fq(t, x), for every (t, x) ∈ R × RN .

Correspondingly, F∗q will be positively 2/(2−q)−homogeneous, by standard properties of the Legendre-
Fenchel transform. Thanks to this remark, it is sufficient to compute for ξ ∈ RN

F∗q(−1, ξ), F∗q(0, ξ) and F∗q(1, ξ).

By definition, we have

F∗q(s, ξ) = sup
(t,x)∈R×RN

[
t s + 〈x, ξ〉 − Fq(t, x)

]
= sup

t≥0, x∈RN

[
t s + |x| |ξ| − Fq(t, x)

]
= sup

(t,m)∈E

[
t s + m |ξ| − m2 t

2
q−2

]
,

where we set∗

E =
{
(t,m) ∈ R × R : t > 0, m ≥ 0

}
∪ {(0, 0)}.

We thus easily get for ξ ∈ RN

F∗q(1, ξ) = sup
(t,m)∈E

[
t + m |ξ| − m2 t

2
q−2

]
= +∞,

and
F∗q(0, 0) = sup

(t,m)∈E

[
−m2 t

2
q−2

]
= 0.

Moreover, for ξ , 0 we have

F∗q(0, ξ) = sup
(t,m)∈E

[
m |ξ| − m2 t

2
q−2

]
= +∞,

as can be seen by taking

t = n ∈ N and m =
1
2
|ξ| n2− 2

q ,

and letting n go to +∞. We are left with computing for ξ ∈ RN

F∗q(−1, ξ) = sup
(t,m)∈E

[
−t + m |ξ| − m2 t

2
q−2

]
.

We observe at first that we easily have

F∗q(−1, 0) = sup
(t,m)∈E

[
−t − m2 t

2
q−2

]
= 0.

∗For notational simplicity, we use the convention that m2 t
2
q −2

= 0 when both t = 0 and m = 0.
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We thus take ξ ∈ RN \ {0} and we make a preliminary observation: if (t,m) ∈ E are such that

m > 0 and t =
|ξ|

2
m,

we get

F∗q(−1, ξ) ≥
|ξ|

2
m −

(
|ξ|

2

) 2
q−2

m
2
q ,

and the last quantity can be made strictly positive, for m > 0 small enough, thanks to the fact that
2/q > 1. On the contrary, every point (t, 0) ∈ E can not be a maximizer for the problem which defines
F∗q(−1, ξ), since on these points

−t + m |ξ| − m2 t
2
q−2 = −t ≤ 0.

This simple observation implies that we can rewrite the maximization problem for F∗q(−1, ξ) as

F∗q(−1, ξ) = sup
t>0,m>0

[
−t + m |ξ| − m2 t

2
q−2

]
.

Moreover, this quantity is strictly positive. In order to explicitly compute it, we will exploit the
homogeneity of the function (t,m) 7→ m2 t

2
q−2. Indeed, we first observe that by taking λ > 0 and

replacing (t,m) by (λ t, λm) we get

F∗q(−1, ξ) = sup
t>0,m>0, λ>0

[
−λ t + λm |ξ| − λ

2
q m2 t

2
q−2

]
.

Now we observe that the derivative of the function

h(λ) = −λ t + λm |ξ| − λ
2
q m2 t

2
q−2,

is given by

h′(λ) = −t + m |ξ| −
2
q
λ

2
q−1 m2 t

2
q−2.

We now distinguish two cases: if m |ξ| − t ≤ 0, the previous computation shows that h is decreasing on
(0,+∞) and thus

h(λ) ≤ lim
λ→0+

h(λ) = 0.

On the other hand, if m |ξ| − t > 0, then we get that h has a unique maximum point at

λ0 =

(
q
2

m |ξ| − t

m2 t
2
q−2

) q
2−q

,

thus

h(λ) ≤
(
q
2

m |ξ| − t

m2 t
2
q−2

) q
2−q (
− t + m |ξ|

)
−

(
q
2

m |ξ| − t

m2 t
2
q−2

) 2
2−q

m2 t
2
q−2

=

(
m |ξ| − t
mq t1−q

) 2
2−q (q

2

) q
2−q 2 − q

2
.
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This discussion entails that

F∗q(−1, ξ) =

(q
2

) q
2−q 2 − q

2
sup

t>0,m>0


(
m |ξ| − t
mq t1−q

) 2
2−q

: m |ξ| > t

 .
We are left with computing such a supremum. We may notice that the objective function only depends
on the ratio t/m, indeed we have

m |ξ| − t
mq t1−q =

( t
m

)q (m
t
|ξ| − 1

)
.

Thus, if we set τ = t/m, we finally arrive at the problem

F∗q(−1, ξ) =

(q
2

) q
2−q 2 − q

2
sup
τ>0


(
τq

(
|ξ|

τ
− 1

)) 2
2−q

: |ξ| > τ

 .
It is easily seen that the function

f (τ) = τq

(
|ξ|

τ
− 1

)
,

is maximal in the interval (0, |ξ|) for

τ0 =
q − 1

q
|ξ|.

Thus we obtain

sup
τ>0

{
τq

(
|ξ|

τ
− 1

)
: |ξ| > τ

}
=

1
q

(
q − 1

q

)q−1

|ξ|q,

which eventually leads to

F∗q(−1, ξ) =

(q
2

) q
2−q 2 − q

2

1
q

(
q − 1

q

)q−1 2
2−q

|ξ|
2 q
2−q .

Thanks to the positive homogeneity of F∗q already discussed, we get the desired conclusion. �

Remark 3.2 (Relation between F∗q and Gq). From the previous result, we get more generally that for
every C > 0, we have

(C Fq)∗(s, ξ) = C F∗q
( s
C
,
ξ

C

)
= C−

q
2−q F∗q(s, ξ).

This easily follows from the properties of the Legendre-Fenchel transform, together with the fact that
F∗q is 2/(2 − q)−positively homogeneous. In particular, by taking C = 1/(2 q), we have(

1
2 q

Fq

)∗
(s, ξ) = (2 q)

q
2−q F∗q(s, ξ).

By recalling the definition (1.5) of Gq, we easily see that(
Gq(s, ξ)

) 2
2−q

=
1
αq

F∗q(s, ξ),
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and thus (
1

2 q
Fq

)∗
(s, ξ) = (2 q)

q
2−q F∗q(s, ξ) = (2 q)

q
2−q αq

(
Gq(s, ξ)

) 2
2−q
.

Finally, by using that

αq =
2 − q
2 q

(
q − 1

q

) 2 (q−1)
2−q

(
1
2

) q
2−q

,

we get the relation (
1

2 q
Fq

)∗
(s, ξ) =

2 − q
2

(q − 1)(q−1) 2
2−q

(
Gq(s, ξ)

) 2
2−q
. (3.3)

We are going to use this identity in the proof of the main result.

4. A concave maximization problem

By combining Proposition 2.1 and the convexity of the function Fq above, we can rewrite the
variational problem which defines λ1(Ω; q) as a concave optimization problem. This property is
crucial for the proof of Theorem 1.1.

Proposition 4.1. Let 1 < q < 2 and let Ω ⊂ RN be an open set, with finite measure. We define the
following subset of W1,2

0 (Ω)

Xq(Ω) =

{
ψ ∈ W1,2

0 (Ω) ∩ L∞(Ω) :
∫

Ω

Fq(ψ,∇ψ) dx < +∞

}
.

Then Xq(Ω) is convex and we have

2 − q
q

(
1

λ1(Ω; q)

) q
2−q

= max
ϕ∈W1,2

0 (Ω)

{
2
q

∫
Ω

|ϕ|q dx −
∫

Ω

|∇ϕ|2 dx
}

= sup
ψ∈Xq(Ω)

{
2
q

∫
Ω

ψ dx −
1
q2

∫
Ω

Fq(ψ,∇ψ) dx
}
.

(4.1)

Finally, the last supremum is attained by a function v ∈ Xq(Ω) of the form

v = wq,

where w is the same as in Proposition 2.1.

Proof. Convexity of Xq(Ω) immediately follows from the convexity of the function Fq. We now come
to the proof of (4.1). The first identity is already contained in Proposition 2.1. Let us take w ∈
W1,2

0 (Ω) ∩ L∞(Ω) to be the positive maximizer of

max
ϕ∈W1,2

0 (Ω)

{
2
q

∫
Ω

|ϕ|q dx −
∫

Ω

|∇ϕ|2 dx
}
.

We now set v = wq and observe that v ∈ W1,2
0 (Ω) ∩ L∞(Ω), since v is the composition of a function

in W1,2
0 (Ω) ∩ L∞(Ω) with a locally Lipschitz function, vanishing at the origin. From the chain rule in

Sobolev spaces, we get
∇v = q wq−1 ∇w = q v

q−1
q ∇w,
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where we also used the relation between w and v, to replace wq−1. Since w > 0 in Ω, we have the same
property for v, as well. Thus we can infer

∇w =
1
q

v
1
q−1
∇v, a. e. in Ω.

By raising to the power 2 and integrating, we get∫
Ω

|∇w|2 dx =
1
q2

∫
Ω

|∇v|2 v
2
q−2 dx =

1
q2

∫
Ω

Fq(v,∇v) dx,

which shows that v ∈ Xq(Ω). By recalling that w is optimal, this also shows that

max
ϕ∈W1,2

0 (Ω)

{
2
q

∫
Ω

|ϕ|q dx −
∫

Ω

|∇ϕ|2 dx
}
≤ sup

ψ∈Xq(Ω)

{
2
q

∫
Ω

ψ dx −
1
q2

∫
Ω

Fq(ψ,∇ψ) dx
}
.

On the other hand, let ψ ∈ Xq(Ω). Thanks to the form of the function Fq, this in particular implies that

ψ(x) ≥ 0, for a. e. x ∈ Ω.

For every ε > 0, we introduce the C1 function

gε(τ) = (εq + τ)
1
q − ε, for every τ ≥ 0.

Then we set ϕε = gε ◦ ψ and observe that ϕε ∈ W1,2
0 (Ω), thanks to the fact that gε is C1 with bounded

derivative and gε(0) = 0. Again by the chain rule, we have

∇ϕε = g′ε(ψ)∇ψ =
1
q

(εq + ψ)
1
q−1
∇ψ.

By raising to the power 2 and integrating, we get∫
Ω

|∇ϕε|
2 dx =

1
q2

∫
Ω

(εq + ψ)
2
q−2
|∇ψ|2 dx ≤

1
q2

∫
Ω

Fq(ψ,∇ψ) dx.

In the last inequality, we used the well-known fact that ∇ψ vanishes almost everywhere on the zero set
of the Sobolev function ψ (see for example [27, Theorem 6.19]). This in turn implies that

max
ϕ∈W1,2

0 (Ω)

{
2
q

∫
Ω

|ϕ|q dx −
∫

Ω

|∇ϕ|2 dx
}
≥

2
q

∫
Ω

|ϕε|
q dx −

∫
Ω

|∇ϕε|
2 dx

≥
2
q

∫
Ω

gε(ψ)q dx −
1
q2

∫
Ω

Fq(ψ,∇ψ) dx.

It is only left to pass to the limit as ε goes to 0 in the integral containing gε(ψ). This can be done by a
standard application of the Lebesgue Dominated Convergence Theorem. This finally leads to

max
ϕ∈W1,2

0 (Ω)

{
2
q

∫
Ω

|ϕ|q dx −
∫

Ω

|∇ϕ|2 dx
}
≥

2
q

∫
Ω

ψ dx −
1
q2

∫
Ω

Fq(ψ,∇ψ) dx.

By arbitrariness of ψ ∈ Xq(Ω), we eventually get the desired conclusion (4.1).
The above discussion also prove the last statement, about a maximizer of the problem settled over

Xq(Ω). �
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Remark 4.2. The previous result is crucially based on the fact that the Dirichlet integral, apart from
being convex in the usual sense, enjoys a suitable form of “hidden” convexity. In other words, for ϕ
positive we have that

ϕ 7→

∫
Ω

|∇ϕ|2 dx,

remains convex also with respect to the new variable ψ = ϕq, for the whole range 1 ≤ q ≤ 2. In
the limit case q = 2, this remarkable fact has been proved by Benguria, see [2, Theorem 4.3] and [3,
Lemma 4]. For 1 < q < 2 this property seems to have been first detected in [25, Proposition 4], see
also [29, Proposition 1.1] and [34, Example 5.2].

Actually, we can restrict the maximization to smooth compactly supported functions, without
affecting the value of the supremum. This is the content of the following result.

Lemma 4.3. With the notation of Proposition 4.1, we have

sup
ψ∈Xq(Ω)

{
2
q

∫
Ω

ψ dx −
1
q2

∫
Ω

Fq(ψ,∇ψ) dx
}

= sup
ψ∈Xq(Ω)∩C1

0(Ω)

{
2
q

∫
Ω

ψ dx −
1
q2

∫
Ω

Fq(ψ,∇ψ) dx
}
.

Proof. We just need to prove that

sup
ψ∈Xq(Ω)

{
2
q

∫
Ω

ψ dx −
1
q2

∫
Ω

Fq(ψ,∇ψ) dx
}
≤ sup

ψ∈Xq(Ω)∩C1
0(Ω)

{
2
q

∫
Ω

ψ dx −
1
q2

∫
Ω

Fq(ψ,∇ψ) dx
}
.

We take ϕ ∈ C∞0 (Ω) not identically zero and set ψ = |ϕ|q ∈ C1
0(Ω). As above, we have

|∇ψ| = q |ϕ|q−1 |∇ϕ| = qψ
q−1

q |∇ϕ|,

which holds everywhere on Ω. This in particular implies that ∇ψ vanishes on every point where ψ
vanishes. Thus we have

Fq(ψ,∇ψ) =

{
|∇ψ|2 ψ

2
q−2, if ψ , 0,

0, if ψ = 0.

By integrating and recalling the relation above between ∇ψ, ψ and ∇ϕ, we then obtain∫
Ω

Fq(ψ,∇ψ) dx ≤ q2
∫

Ω

|∇ϕ|2 dx.

This in turn implies

2
q

∫
Ω

ψ dx −
1
q2

∫
Ω

Fq(ψ,∇ψ) dx ≥
2
q

∫
Ω

|ϕ|q dx −
∫

Ω

|∇ϕ|2 dx.

By arbitrariness of ϕ ∈ C∞0 (Ω), we get

sup
ψ∈Xq(Ω)∩C1

0(Ω)

{
2
q

∫
Ω

ψ dx −
1
q2

∫
Ω

Fq(ψ,∇ψ) dx
}

≥ sup
ϕ∈C∞0 (Ω)

{
2
q

∫
Ω

|ϕ|q dx −
∫

Ω

|∇ϕ|2 dx
}
.

(4.2)
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On the other hand, by density of C∞0 (Ω) in W1,2
0 (Ω), it is easily seen that

sup
ϕ∈C∞0 (Ω)

{
2
q

∫
Ω

|ϕ|q dx −
∫

Ω

|∇ϕ|2 dx
}

= max
ϕ∈W1,2

0 (Ω)

{
2
q

∫
Ω

|ϕ|q dx −
∫

Ω

|∇ϕ|2 dx
}
.

The desired conclusion now follows by combining Proposition 4.1 and (4.2). �

5. Proof of the main results

5.1. Proof of Theorem 1.1

We recall the definition

A(Ω) =
{
( f , φ) ∈ L1

loc(Ω) × L2
loc(Ω;RN) : −div φ + f ≥ 1 in Ω

}
,

where the condition −div φ + f ≥ 1 has to be intended in distributional sense, i.e.,∫
Ω

[
〈φ,∇ψ〉 + f ψ

]
dx ≥

∫
Ω

ψ dx, for every ψ ∈ C1
0(Ω) such that ψ ≥ 0.

In particular, for every ( f , φ) ∈ A(Ω) and every ψ ∈ Xq(Ω) ∩C1
0(Ω), we can write

2
q

∫
Ω

ψ dx −
1
q2

∫
Ω

Fq(ψ,∇ψ) dx ≤
2
q

∫
Ω

[
f ψ + 〈φ,∇ψ〉

]
dx −

1
q2

∫
Ω

Fq(ψ,∇ψ) dx

=
2
q

∫
Ω

[
f ψ + 〈φ,∇ψ〉 −

1
2 q

Fq(ψ,∇ψ)
]

dx.

By Lemma 3.1 and Eq (3.3) from Remark 3.2, the following inequality holds almost everywhere

f ψ + 〈φ,∇ψ〉 −
1

2 q
Fq(ψ,∇ψ) ≤

2 − q
2

(q − 1)(q−1) 2
2−q

(
Gq( f , φ)

) 2
2−q
.

This simply follows from the definition of Legendre-Fenchel transform. By integrating this inequality
and taking the supremum over ψ, we obtain

sup
ψ∈Xq(Ω)∩C1

0(Ω)

{
2
q

∫
Ω

ψ dx −
1
q2

∫
Ω

Fq(ψ,∇ψ) dx
}
≤

2 − q
q

(q − 1)(q−1) 2
2−q

∫
Ω

(
Gq( f , φ)

) 2
2−q dx.

By combining Proposition 4.1 and Lemma 4.3 and taking the infimum over admissible pairs ( f , φ), we
get

1
λ1(Ω; q)

≤ (q − 1)(q−1) 2
q inf

( f ,φ)∈A(Ω)

(∫
Ω

(
Gq( f , φ)

) 2
2−q dx

) 2−q
q

.

In order to prove the reverse inequality and identify a minimizing pair, we take

φ0 =
∇w
wq−1 and f0 = −(q − 1)

|∇w|2

wq ,
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where w is the function of Proposition 2.1. In light of the properties of w, both φ0 and f0 have the
required integrability properties. Moreover, it is not difficult to see that these are admissible, since it
holds

−div φ0 + f0 = 1, in Ω,

in distributional sense. It is sufficient to use the equation solved by w. By recalling the definition (1.5)
of Gq, when ∇w , 0 we have

Gq( f0, φ0) = |φ0|
q | f0|

1−q = (q − 1)1−q |∇w|2−q.

On the other hand, since both f0 and φ0 vanish when ∇w = 0, in this case we have that Gq( f0, φ0) would
vanish, as well. In conclusion, we get∫

Ω

(
Gq( f0, φ0)

) 2
2−q dx = (q − 1)

2 (1−q)
2−q

∫
Ω

|∇w|2 dx.

Thus we obtain

(q − 1)(q−1) 2
q inf

( f ,φ)∈A(Ω)

(∫
Ω

(
Gq( f , φ)

) 2
2−q dx

) 2−q
q

≤

(∫
Ω

|∇w|2 dx
) 2−q

q

.

We can now use that by Proposition 2.1∫
Ω

|∇w|2 dx =
q

2 − q

(
2
q

∫
Ω

|w|q dx −
∫

Ω

|∇w|2 dx
)

=
q

2 − q
max

ϕ∈W1,2
0 (Ω)

{
2
q

∫
Ω

|ϕ|q dx −
∫

Ω

|∇ϕ|2 dx
}

=

(
1

λ1(Ω; q)

) q
2−q

.

The first identity above follows by testing the Euler-Lagrange equation for w, i.e.,∫
Ω

〈∇w,∇ϕ〉 dx =

∫
Ω

wq−1 ϕ dx, for every ϕ ∈ W1,2
0 (Ω),

with ϕ = w itself. This finally proves that the reverse inequality holds

(q − 1)(q−1) 2
q inf

( f ,φ)∈A(Ω)

(∫
Ω

(
Gq( f , φ)

) 2
2−q dx

) 2−q
q

≤
1

λ1(Ω; q)
,

as well. The second part of the proof also proves that ( f0, φ0) is an optimal pair.

5.2. Proof of Theorem 1.3

In order to prove the inequality

1
λ1(Ω)

≤ inf
( f ,φ)∈A(Ω)

∥∥∥∥G2( f , φ)
∥∥∥∥

L∞(Ω)
, (5.1)

we will go through an approximation argument, for simplicity. Let ( f , φ) ∈ A(Ω) be an admissible
pair, we can suppose that

M :=
∥∥∥∥G2( f , φ)

∥∥∥∥
L∞(Ω)

< +∞.
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Thanks to the definition of G2, this implies in particular that the pair ( f , φ) has the following properties:

| f (x)| = 0 implies that |φ(x)| = 0, for a. e. x ∈ Ω,

and
|φ(x)|2 ≤ M | f (x)|, for a. e. x ∈ Ω.

We thus obtain for every 1 < q < 2

|φ|q

| f |q−1 ≤ M
q
2 | f |

2−q
2 ∈ L

2
2−q

loc (Ω),

and thus (
Gq( f , φ)

) 2
2−q
≤ M

q
2−q | f | ∈ L1

loc(Ω).

This estimate guarantees that for every open set Ω′ compactly contained in Ω, we have(∫
Ω′

(
Gq( f , φ)

) 2
2−q dx

) 2−q
q

≤ M
(∫

Ω′
| f | dx

) 2−q
q

=
∥∥∥∥G2( f , φ)

∥∥∥∥
L∞(Ω)

(∫
Ω′
| f | dx

) 2−q
q

. (5.2)

By Theorem 1.1 applied to Ω′, we have for every 1 < q < 2

1
λ1(Ω′; q)

≤ (q − 1)(q−1) 2
q

∥∥∥∥Gq( f , φ)
∥∥∥∥ 2

q

L
2

2−q (Ω′)
.

By using (5.2) on the right-hand side and taking the limit as q goes to 2, we get

1
λ1(Ω′)

≤

∥∥∥∥G2( f , φ)
∥∥∥∥

L∞(Ω)
, (5.3)

by virtue of Lemma 2.2. We can now take an increasing sequence of open sets {Ωn}n∈N compactly
contained in Ω and invading it, i.e., such that

Ω =
⋃
n∈N

Ωn.

By using that†

lim
n→∞

λ1(Ωn) = λ1(Ω),

and applying (5.3) to each Ωn, we get

1
λ1(Ω)

≤

∥∥∥∥G2( f , φ)
∥∥∥∥

L∞(Ω)
.

†This simply follows from the properties of the sequence {Ωn}n∈N and the fact that

λ1(Ω) = min
ϕ∈W1,2

0 (Ω)\{0}

∫
Ω

|∇ϕ|2 dx∫
Ω

|ϕ|2 dx
= inf

ϕ∈C∞0 (Ω)\{0}

∫
Ω

|∇ϕ|2 dx∫
Ω

|ϕ|2 dx
.
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By arbitrariness of ( f , φ) ∈ A(Ω), we get (5.1) as desired.
In order to prove the reverse inequality, we take

φ0 =
1

λ1(Ω)
∇U
U

and f0 = −
1

λ1(Ω)
|∇U |2

U2 ,

where U is any positive first eigenfunction of Ω. It is easily seen that this pair is admissible for the
variational problem

inf
( f ,φ)∈A(Ω)

∥∥∥∥G2( f , φ)
∥∥∥∥

L∞(Ω)
.

Moreover, we have

G2( f0, φ0) ≤
1

λ1(Ω)
, a. e. in Ω,

where we also used that f0 vanishes if and only if φ0 vanishes and in this case G2( f0, φ0) = 0. This
gives

inf
( f ,φ)∈A(Ω)

∥∥∥∥G2( f , φ)
∥∥∥∥

L∞(Ω)
≤

∥∥∥∥G2( f0, φ0)
∥∥∥∥

L∞(Ω)
=

1
λ1(Ω)

,

thus concluding the proof.

6. Applications to geometric estimates

In this section, we briefly sketch some geometric estimates for the generalized principal frequencies,
that can be inferred from our main result.

6.1. Diaz-Weinstein–type estimates

We start by recalling the Diaz-Weinstein inequality for the torsional rigidity. This is given by the
following estimate‡

T (Ω) ≤
1

N2 I2(Ω), where I2(Ω) = min
x0∈RN

∫
Ω

|x − x0|
2 dx, (6.1)

see [16, formula (11)], which is valid for open sets Ω ⊂ RN such that∫
Ω

|x|2 dx < +∞.

The quantityI2(Ω) is sometimes called polar moment of inertia of Ω. It is easily seen that the minimum
in its definition is uniquely attained at the centroid of Ω, i.e., at the point

xΩ =
1
|Ω|

∫
Ω

x dx.

‡In [16] the case N = 2 is considered and a slightly different proof is given. The definition of torsional rigidity in [16] coincides with
ours for simply connected sets, up to a multiplicative factor 4.
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The Diaz-Weinstein inequality can be proved by appealing to the dual formulation for the torsional
rigidity. Indeed, for every x0 ∈ Ω, it is sufficient to use the admissible vector field

φ0 =
x0 − x

N
,

in the dual problem (1.2). This automatically gives

T (Ω) ≤
1

N2

∫
Ω

|x − x0|
2 dx,

and thus (6.1) follows by arbitrariness of x0 ∈ R
N . We observe that this estimate is sharp, as equality is

attained for a ball. Indeed, recall that the unique W1,2
0 (Ω) solution of −∆u = 1 in a ball of radius R and

center x0 is given by

w(x) =
R2 − |x − x0|

2

2 N
, for every x ∈ RN such that |x − x0| < R.

Thus, by observing that φ0 = ∇w and recalling the discussion in Subsection 1.2, we get the claimed
optimality.

We now show how the previous argument can be extended to the case 1 < q < 2. We fix again a
point x0 ∈ R

N and take a constant α > 1/N, then we choose the pair

φ0(x) = α (x0 − x) and f0(x) = 1 − αN.

Observe that this solves
−div φ0 + f0 = 1, in RN .

Thus the pair ( f0, φ0) is admissible for the dual problem (1.6), for every 1 < q < 2. By Theorem 1.1
we immediately get

1
λ1(Ω; q)

≤ (q − 1)(q−1) 2
q

∥∥∥∥Gq( f0, φ0)
∥∥∥∥ 2

q

L
2

2−q (Ω)

= (q − 1)(q−1) 2
q

α2

(αN − 1)(q−1) 2
q

(∫
Ω

|x − x0|
2 q
2−q dx

) 2−q
q

.

We now observe that the quantity
α2

(αN − 1)(q−1) 2
q

,

is minimal for α = q/N. By making such a choice for α and using the arbitrariness of x0, we then get
the following

Corollary 6.1 (Diaz-Weinstein–type estimate). Let 1 < q < 2 and let Ω ⊂ RN be an open set such that∫
Ω

|x|
2 q
2−q dx < +∞.

Then we have

λ1(Ω; q) ≥
( q
N

)2 (
I 2 q

2−q
(Ω)

)− 2−q
q
, where I 2 q

2−q
(Ω) = min

x0∈RN

∫
Ω

|x − x0|
2 q
2−q dx. (6.2)
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Remark 6.2. We notice that for 1 < q < 2 the estimate (6.2) does not appear to be sharp. In order to
get the sharp constant, it seems unavoidable the use of more sophisticated arguments, based on radially
symmetric decreasing rearrangements. These permit to show that both quantities

λ1(Ω; q) and I 2 q
2−q

(Ω),

are minimal for a ball, among sets with given measure. By combining these two facts, then we get that
the sharp constant in (6.2) is given by

λ1(B1; q)
(
I 2 q

2−q
(B1)

) 2−q
q
,

where B1 = {x ∈ RN : |x| < 1}.
Nevertheless, we believe that the duality-based proof exposed above is interesting anyway: this

gives a cheap way to get a scale invariant geometric estimate with a simple explicit constant, by means
of an elementary argument.

6.2. Cheeger–type estimates

We recall that the Cheeger constant for an open set Ω ⊂ RN is given by

h1(Ω) = inf
{

P(E)
|E|

: E ⊂ Ω bounded with |E| > 0
}
.

Here P(E) is the distributional perimeter of a set E. The Cheeger constant has the following dual
characterization

1
h1(Ω)

= min
φ∈L∞(Ω;RN )

{
‖φ‖L∞(Ω) : −div φ = 1 in Ω

}
. (6.3)

This characterization seems to have first appeared in [33, Section 4]. The fact that the minimum in
(6.3) is attained easily follows from the Direct Method in the Calculus of Variations.

We take an optimal vector field φΩ in (6.3) and then for every ε > 0 we make the choice

φ0 = (1 + ε) φΩ and f0 = −ε.

By observing that ( f0, φ0) ∈ A(Ω), from Theorem 1.1 we get

1
λ1(Ω; q)

≤ (q − 1)(q−1) 2
q

∥∥∥∥Gq( f0, φ0)
∥∥∥∥ 2

q

L
2

2−q (Ω)

= (q − 1)(q−1) 2
q

(1 + ε)2

ε(q−1) 2
q

(∫
Ω

|φΩ|
2 q
2−q dx

) 2−q
q

≤ (q − 1)(q−1) 2
q

(1 + ε)2

ε(q−1) 2
q

‖φΩ‖
2
L∞(Ω) |Ω|

2−q
q .

We now notice that the quantity
(1 + ε)2

ε(q−1) 2
q

,
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is minimal with the choice ε = (q − 1). Then such a choice leads to the estimate

1
λ1(Ω; q)

≤ q2 1
h1(Ω)2 |Ω|

2−q
q .

Thus, we proved the following

Corollary 6.3. Let 1 < q < 2 and let Ω ⊂ RN be an open set, with finite measure. Then we have the
Cheeger-type inequality (

h1(Ω)
q

)2

≤ |Ω|
2−q

q λ1(Ω; q). (6.4)

Remark 6.4. By taking the limits as q goes to 1 and as q goes to 2 in (6.4), we recover

h1(Ω)2 ≤
|Ω|

T (Ω)
and

(
h1(Ω)

2

)2

≤ λ1(Ω),

respectively. The first estimate has been proved in [11, Theorem 2], while the second one is the classical
Cheeger inequality for the Laplacian, see [14]. Both inequalities are sharp in the following sense: by
taking the N−dimensional unit ball B1(0), one may prove that

lim
N→∞

|B1(0)|
T (B1(0))

1
h1(B1(0))2 = 1 and lim

N→∞

λ1(B1(0))
h1(B1(0))2 =

1
4
.

The first fact can be easily seen, by recalling that

T (B1(0)) =
|B1(0)|

N (N + 2)
and h1(B1(0)) = N.

The second fact has been recently observed in [20, Theorem 1.3] and is based on asymptotics for zeros
of Bessel functions.

This somehow suggests that the general estimate (6.4) should be sharp, as well, by using a similar
argument. However, the task of computing the exact asymptotics for λ1(B1(0); q), as the dimension N
goes to∞, does not seem easy.

6.3. Hersch-Makai–type estimates

We now take Ω ⊂ RN to be an open bounded convex set. We will employ in a dual way a trick by
Kajikiya (see [23, 24] and also [8]), in conjunction with our duality result. This will give us a sharp
lower bound on λ1(Ω; q) in terms on the inradius and the perimeter of the set.

We indicate by dΩ : Ω → R the distance function from the boundary ∂Ω, while RΩ will be the
inradius of Ω. We recall that this coincides with the supremum of the distance function, that is

RΩ = sup
x∈Ω

dΩ(x).

We take g to be the unique positive solution of

max
ϕ∈W1,2

0 ((−1,1))

{
2
q

∫ 1

−1
|ϕ|q dt −

∫ 1

−1
|ϕ′|2 dt

}
.
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This satisfies the equation

−g′′ = gq−1, in (−1, 1), with g(−1) = g(1) = 0.

This is a concave even function, which is increasing on (−1, 0) and decreasing on (0, 1). We then
“transplant” this function to Ω, by setting

u(x) = R
2

2−q

Ω
g
(
dΩ(x)

RΩ

− 1
)
, for x ∈ Ω.

By using the equation solved by g, the fact that |∇dΩ| = 1 almost everywhere and the weak
superharmonicity§ of dΩ, we get that

−∆u ≥ uq−1, in Ω,

in weak sense. This entails that the pair

φ0 =
∇u
uq−1 and f0 = −(q − 1)

|∇u|2

uq ,

is admissible for the dual problem (1.6). By Theorem 1.1, we then get

1
λ1(Ω; q)

≤ (q − 1)(q−1) 2
q

∥∥∥∥Gq( f0, φ0)
∥∥∥∥ 2

q

L
2

2−q (Ω)
=

(∫
Ω

|∇u|2 dx
) 2−q

q

.

By using the explicit form of u and again the fact that |∇dΩ| = 1 almost everywhere in Ω, the previous
estimate can be rewritten as

1
λ1(Ω; q)

≤ R2
Ω

∫
Ω

∣∣∣∣∣∣g′
(

dΩ

RΩ

− 1
)∣∣∣∣∣∣2 dx


2−q

q

. (6.5)

We observe that this is already a geometric estimate in nuce, since the right-hand side only depends on
elementary geometric quantities of Ω (i.e., the distance function and the inradius) and on the universal
one-dimensional function g. Moreover, it is not difficult to see that (6.5) is sharp (see Remark 6.6
below).

Let us try to derive from (6.5) a more explicit estimate. At this aim, we can use the Coarea Formula
with respect to the distance function, so to get∫

Ω

∣∣∣∣∣∣g′
(

dΩ

RΩ

− 1
)∣∣∣∣∣∣2 dx =

∫ RΩ

0

∣∣∣∣∣∣g′
(

t
RΩ

− 1
)∣∣∣∣∣∣2 P(Ωt) dt,

where Ωt = {x ∈ Ω : dΩ(x) > t}. We now recall that t 7→ P(Ωt) is monotone decreasing, in a convex
set (see [10, Lemma 2.2.2]). Thus we automatically get∫

Ω

∣∣∣∣∣∣g′
(

dΩ

RΩ

− 1
)∣∣∣∣∣∣2 dx ≤ P(Ω)

∫ RΩ

0

∣∣∣∣∣∣g′
(

t
RΩ

− 1
)∣∣∣∣∣∣2 dt.

§This follows from the convexity of Ω.
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A simple change of variable then leads to∫
Ω

∣∣∣∣∣∣g′
(

dΩ

RΩ

− 1
)∣∣∣∣∣∣2 dx ≤ P(Ω) RΩ

∫ 0

−1
|g′(τ)|2 dτ.

We can insert this estimate in (6.5) to obtain

1
λ1(Ω; q)

≤ R
q+2

q

Ω
P(Ω)

2−q
q

(∫ 0

−1
|g′(τ)|2 dτ

) 2−q
q

.

By using that g is even and the identity∫ 1

−1
|g′(τ)|2 dτ =

∫ 1

−1
|g(τ)|q dτ,

we have ∫ 0

−1
|g′|2 dτ =

1
2

∫ 1

−1
|g′|2 dτ =

1
2

q
2 − q

[
2
q

∫ 1

−1
|g|q dτ −

∫ 1

−1
|g′|2 dτ

]
=

1
2

(
1

λ1((−1, 1); q)

) q
2−q

In the last equality we used the optimality of g and Proposition 2.1, for the one-dimensional set Ω =

(−1, 1). This gives

1
λ1(Ω; q)

≤ R
q+2

q

Ω
P(Ω)

2−q
q

(
1
2

) 2−q
q 1
λ1((−1, 1); q)

.

If we now recall the definition

π2,q = inf
ϕ∈W1,2

0 ((0,1))\{0}

‖ϕ′‖L2((0,1))

‖ϕ‖Lq((0,1))
,

and use the scaling properties of Sobolev-Poincaré constants, we get

λ1((−1, 1); q) = (π2,q)2 2−
2+q

q .

Thus, we finally obtain the following

Corollary 6.5. Let 1 < q < 2 and let Ω ⊂ RN be an open bounded convex set. Then we have

λ1(Ω; q) ≥
(π2,q

2

)2 P(Ω)
q−2

q

R
q+2

q

Ω

. (6.6)

Remark 6.6. When compared with the Hersch-Makai–type inequality

λ1(Ω; q) ≥
(π2,q

2

)2 |Ω|
q−2

q

R2
Ω

, (6.7)
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already recalled in the Introduction, we see that the estimate (6.6) is slightly weaker. Indeed, the former
implies the latter, by recalling that for a open bounded convex set we have

|Ω| ≤ RΩ P(Ω).

Nevertheless, inequality (6.6) is still sharp: it is sufficient to take the “slab–type” sequence

ΩL =

(
−

L
2
,

L
2

)N−1

× (0, 1),

with L diverging to +∞. For this family of sets we have (see [8, Lemma A.2])

λ1(ΩL; q) ∼
(π2,q)2

L(N−1) 2−q
q

and P(ΩL) ∼ 2 LN−1, as L→ +∞,

and RΩL = 1/2, for L > 1.
We also observe that this slight discrepancy between (6.6) and (6.7) is lost in the limit as q converges

to 2: in both cases the estimates boil down to

λ1(Ω) ≥
(
π

2

)2 1
R2

Ω

,

which is the original Hersch sharp inequality from [22, Théorème 8.1]. We also refer to [12, Theorem
5.5], [15, Theorem 5.1] and [23, Theorem 2.1] for other proofs and extensions of this result.
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molecules, Commun. Math. Phys., 79 (1981), 167–180.

4. M. van den Berg, Estimates for the torsion function and Sobolev constants, Potential Anal., 36
(2012), 607–616.

Mathematics in Engineering Volume 4, Issue 4, 1–28.



27

5. M. S. Berger, M. Schechter, Embedding theorems and quasi-linear elliptic boundary value
problems for unbounded domains, T. Am. Math. Soc., 172 (1972), 261–278.

6. L. Brasco, On principal frequencies and isoperimetric ratios in convex sets, Ann. Fac. Sci. Toulouse
Math., 29 (2020), 977–1005.

7. L. Brasco, G. Franzina, B. Ruffini, Schrödinger operators with negative potentials and Lane-Emden
densities, J. Funct. Anal., 274 (2018), 1825–1863.

8. L. Brasco, D. Mazzoleni, On principal frequencies, volume and inradius in convex sets, Nonlinear
Differ. Equ. Appl., 27 (2020), 12.

9. H. Brezis, L. Oswald, Remarks on sublinear elliptic equations, Nonlinear Anal., 10 (1986), 55–64.

10. D. Bucur, G. Buttazzo, Variational Methods in Shape Optimization Problems, Boston, MA:
Birkhäuser Boston, Inc., 2005.

11. H. Bueno, G. Ercole, Solutions of the Cheeger problem via torsion functions, J. Math. Anal. Appl.,
381 (2011), 263–279.

12. G. Buttazzo, S. Guarino Lo Bianco, M. Marini, Sharp estimates for the anisotropic torsional rigidity
and the principal frequency, J. Math. Anal. Appl., 457 (2018), 1153–1172.

13. T. Carroll, J. Ratzkin, Interpolating between torsional rigidity and principal frequency, J. Math.
Anal. Appl., 379 (2011), 818–826.

14. J. Cheeger, A lower bound for the smallest eigenvalue of the Laplacian, In: Proceedings of the
Princeton conference in honor of Professor S. Bochner, Princeton University Press, 1970, 195–
199.

15. F. Della Pietra, G. di Blasio, N. Gavitone, Sharp estimates on the first Dirichlet eigenvalue of
nonlinear elliptic operators via maximum principle, Adv. Nonlinear Anal., 9 (2020), 278–291.

16. J. B. Diaz, A. Weinstein, The torsional rigidity and variational methods, Am. J. Math., 70 (1948),
107–116.

17. G. Ercole, Absolute continuity of the best Sobolev constant of a bounded domain, J. Math. Anal.
Appl., 404 (2013), 420–428.

18. M. Fleeman, E. Lundberg, The Bergman analytic content of planar domains, Comput. Meth. Funct.
Th., 17 (2017), 369–379.

19. M. Fleeman, B. Simanek, Torsional rigidity and Bergman analytic content of simply connected
regions, Comput. Meth. Funct. Th., 19 (2019), 37–63.

20. I. Ftouhi, On the Cheeger inequality for convex sets, J. Math. Anal. Appl., 504 (2021), 125443.

21. J. Hersch, Physical interpretation and strengthing of M. Protter’s method for vibrating
nonhomogeneous membranes; its analogue for Schrödinger’s equation, Pacific J. Math., 11 (1961),
971–980.

22. J. Hersch, Sur la fréquence fondamentale d’une membrane vibrante: évaluations par défaut et
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