We consider the Cauchy problem for a third order evolution operator P with (t,x)-depending coefficients and complex valued lower order terms. We assume the initial data to be Gevrey regular with an exponential decay at infinity, that is, the data belong to some Gelfand-Shilov space of type S. Under suitable assumptions on the decay at infinity of the imaginary parts of the coefficients of P we prove the existence of a solution with the same Gevrey regularity of the data and we describe its behavior for |x| to infinity.
The Cauchy problem for 3-evolution equations with data in Gelfand-Shilov spaces
Alessia Ascanelli;
2022
Abstract
We consider the Cauchy problem for a third order evolution operator P with (t,x)-depending coefficients and complex valued lower order terms. We assume the initial data to be Gevrey regular with an exponential decay at infinity, that is, the data belong to some Gelfand-Shilov space of type S. Under suitable assumptions on the decay at infinity of the imaginary parts of the coefficients of P we prove the existence of a solution with the same Gevrey regularity of the data and we describe its behavior for |x| to infinity.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
3evol-GS-20211124submittedfile.pdf
solo gestori archivio
Descrizione: Pre-print
Tipologia:
Pre-print
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
527.02 kB
Formato
Adobe PDF
|
527.02 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
AriasJunior2022_Article_TheCauchyProblemFor3-evolution.pdf
accesso aperto
Descrizione: Full text editoriale
Tipologia:
Full text (versione editoriale)
Licenza:
Creative commons
Dimensione
555.86 kB
Formato
Adobe PDF
|
555.86 kB | Adobe PDF | Visualizza/Apri |
I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.