We consider in this paper a diffusion-convection reaction equation in one space dimension. The main assumptions are about the reaction term, which is monostable, and the diffusivity, which changes sign once or even more than once; then, we deal with a forward-backward parabolic equation. Our main results concern the existence of globally defined traveling waves, which connect two equilibria and cross both regions where the diffusivity is positive and regions where it is negative. We also investigate the monotony of the profiles and show the appearance of sharp behaviors at the points where the diffusivity degenerates. In particular, if such points are interior points, then the sharp behaviors are new and unusual.

Wavefronts for degenerate diffusion-convection reaction equations with sign-changing diffusivity

Corli A.
;
2021

Abstract

We consider in this paper a diffusion-convection reaction equation in one space dimension. The main assumptions are about the reaction term, which is monostable, and the diffusivity, which changes sign once or even more than once; then, we deal with a forward-backward parabolic equation. Our main results concern the existence of globally defined traveling waves, which connect two equilibria and cross both regions where the diffusivity is positive and regions where it is negative. We also investigate the monotony of the profiles and show the appearance of sharp behaviors at the points where the diffusivity degenerates. In particular, if such points are interior points, then the sharp behaviors are new and unusual.
2021
Berti, D.; Corli, A.; Malaguti, L.
File in questo prodotto:
File Dimensione Formato  
2021_Berti-Corli-Malaguti_2_DCDS.pdf

solo gestori archivio

Descrizione: Full text ahead of print
Tipologia: Full text (versione editoriale)
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 387.56 kB
Formato Adobe PDF
387.56 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
2011.01034.pdf

accesso aperto

Descrizione: Pre-print
Tipologia: Pre-print
Licenza: Creative commons
Dimensione 328.68 kB
Formato Adobe PDF
328.68 kB Adobe PDF Visualizza/Apri
10.3934_dcds.2021105.pdf

solo gestori archivio

Descrizione: Full text editoriale
Tipologia: Full text (versione editoriale)
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 404.54 kB
Formato Adobe PDF
404.54 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/2470535
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 3
social impact