The cobalt substituted polyoxotungstate [Co6(H2O)2(α-B-PW9O34)2(PW6O26)]17− (Co6) displays fast electron transfer (ET) kinetics to photogenerated RuIII(bpy)33+, 4 to 5 orders of magnitude faster than the corresponding ET observed for cobalt oxide nanoparticles. Mechanistic evidence has been acquired indicating that: (i) the one-electron oxidation of Co6 involves Co(II) aquo or Co(II) hydroxo groups (abbreviated as Co6(II)−OH2 and Co6(II)−OH, respectively, whose speciation in aqueous solution is associated to a pKa of 7.6), and generates a Co(III)−OH moiety (Co6(III)−OH), as proven by transient absorption spectroscopy; (ii) at pH>pKa, the Co6(II)−OH→RuIII(bpy)33+ ET occurs via bimolecular kinetics, with a rate constant k close to the diffusion limit and dependent on the ionic strength of the medium, consistent with reaction between charged species; (iii) at pH a, the process involves Co6(II)−OH2→Co6(III)−OH transformation and proceeds via a multiple-site, concerted proton electron transfer (CPET) where water assists the transfer of the proton, as proven by the absence of effect of buffer base concentrations on the rate of the ET and by a H/D kinetic isotope in a range of 1.2–1.4. The reactivity of water is ascribed to its organization on the surface of the polyanionic scaffold through hydrogen bond networking involving the Co(II)−OH2 group.

Water-Assisted Concerted Proton-Electron Transfer at Co(II)-Aquo Sites in Polyoxotungstates With Photogenerated RuIII(bpy)33+ Oxidant

Mirco Natali
Penultimo
;
2021

Abstract

The cobalt substituted polyoxotungstate [Co6(H2O)2(α-B-PW9O34)2(PW6O26)]17− (Co6) displays fast electron transfer (ET) kinetics to photogenerated RuIII(bpy)33+, 4 to 5 orders of magnitude faster than the corresponding ET observed for cobalt oxide nanoparticles. Mechanistic evidence has been acquired indicating that: (i) the one-electron oxidation of Co6 involves Co(II) aquo or Co(II) hydroxo groups (abbreviated as Co6(II)−OH2 and Co6(II)−OH, respectively, whose speciation in aqueous solution is associated to a pKa of 7.6), and generates a Co(III)−OH moiety (Co6(III)−OH), as proven by transient absorption spectroscopy; (ii) at pH>pKa, the Co6(II)−OH→RuIII(bpy)33+ ET occurs via bimolecular kinetics, with a rate constant k close to the diffusion limit and dependent on the ionic strength of the medium, consistent with reaction between charged species; (iii) at pH a, the process involves Co6(II)−OH2→Co6(III)−OH transformation and proceeds via a multiple-site, concerted proton electron transfer (CPET) where water assists the transfer of the proton, as proven by the absence of effect of buffer base concentrations on the rate of the ET and by a H/D kinetic isotope in a range of 1.2–1.4. The reactivity of water is ascribed to its organization on the surface of the polyanionic scaffold through hydrogen bond networking involving the Co(II)−OH2 group.
2021
Rigodanza, Francesco; Marino, Nadia; Bonetto, Alessandro; Marcomini, Antonio; Bonchio, Marcella; Natali, Mirco; Sartorel, Andrea
File in questo prodotto:
File Dimensione Formato  
2021 - ChemPhysChem - Co Banana.pdf

accesso aperto

Descrizione: Full text ahead of print
Tipologia: Full text (versione editoriale)
Licenza: Creative commons
Dimensione 2.45 MB
Formato Adobe PDF
2.45 MB Adobe PDF Visualizza/Apri
ChemPhysChem - 2021 - Rigodanza - Water‐Assisted Concerted Proton‐Electron Transfer at Co II ‐Aquo Sites in.pdf

accesso aperto

Descrizione: Full text editoriale
Tipologia: Full text (versione editoriale)
Licenza: Creative commons
Dimensione 2.27 MB
Formato Adobe PDF
2.27 MB Adobe PDF Visualizza/Apri

I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/2461911
Citazioni
  • ???jsp.display-item.citation.pmc??? 3
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 3
social impact