The electric transport properties of flexible and transparent conducting bilayers, realized by sputtering ultrathin gold nanometric layers on sodium–alginate free-standing films, were studied. The reported results cover a range of temperatures from 3 to 300 K. In the case of gold layer thicknesses larger than 5 nm, a typical metallic behavior was observed. Conversely, for a gold thickness of 4.5 nm, an unusual resistance temperature dependence was found. The dominant transport mechanism below 70 K was identified as a fluctuation-induced tunneling process. This indicates that the conductive region is not continuous but is formed by gold clusters embedded in the polymeric matrix. Above 70 K, instead, the data can be interpreted using a phenomenological model, which assumes an anomalous expansion of the conductive region upon decreasing the temperature, in the range from 300 to 200 K. The approach herein adopted, complemented with other characterizations, can provide useful information for the development of innovative and green optoelectronics.

Electric transport in gold-covered sodium–alginate freestanding foils

Bertoldo M.
Secondo
;
Maccagnani P.;
2021

Abstract

The electric transport properties of flexible and transparent conducting bilayers, realized by sputtering ultrathin gold nanometric layers on sodium–alginate free-standing films, were studied. The reported results cover a range of temperatures from 3 to 300 K. In the case of gold layer thicknesses larger than 5 nm, a typical metallic behavior was observed. Conversely, for a gold thickness of 4.5 nm, an unusual resistance temperature dependence was found. The dominant transport mechanism below 70 K was identified as a fluctuation-induced tunneling process. This indicates that the conductive region is not continuous but is formed by gold clusters embedded in the polymeric matrix. Above 70 K, instead, the data can be interpreted using a phenomenological model, which assumes an anomalous expansion of the conductive region upon decreasing the temperature, in the range from 300 to 200 K. The approach herein adopted, complemented with other characterizations, can provide useful information for the development of innovative and green optoelectronics.
2021
Barone, C.; Bertoldo, M.; Capelli, R.; Dinelli, F.; Maccagnani, P.; Martucciello, N.; Mauro, C.; Pagano, S.
File in questo prodotto:
File Dimensione Formato  
nanomaterials-11-00565-v2.pdf

accesso aperto

Descrizione: Full text editoriale
Tipologia: Full text (versione editoriale)
Licenza: Creative commons
Dimensione 1.97 MB
Formato Adobe PDF
1.97 MB Adobe PDF Visualizza/Apri

I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/2453847
Citazioni
  • ???jsp.display-item.citation.pmc??? 2
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 4
social impact