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Abstract: The electric transport properties of flexible and transparent conducting bilayers, realized
by sputtering ultrathin gold nanometric layers on sodium–alginate free-standing films, were studied.
The reported results cover a range of temperatures from 3 to 300 K. In the case of gold layer thicknesses
larger than 5 nm, a typical metallic behavior was observed. Conversely, for a gold thickness of 4.5 nm,
an unusual resistance temperature dependence was found. The dominant transport mechanism below
70 K was identified as a fluctuation-induced tunneling process. This indicates that the conductive
region is not continuous but is formed by gold clusters embedded in the polymeric matrix. Above
70 K, instead, the data can be interpreted using a phenomenological model, which assumes an
anomalous expansion of the conductive region upon decreasing the temperature, in the range from
300 to 200 K. The approach herein adopted, complemented with other characterizations, can provide
useful information for the development of innovative and green optoelectronics.

Keywords: biopolymers; electric transport measurements; gold thin films

1. Introduction

One of the most relevant and emerging fields of research in recent years concerns
sustainability, with particular reference to the significant amount of energy consumed
for realizing and powering the electronic components during their lifetime [1–3]. In this
respect, it is known that conventional electronics, which are based on natural elements and
individual components, have costs, including their recycling, that can be so high as to be-
come inconvenient in many cases [4,5]. Therefore, the scientific community is increasingly
focusing on the realization of innovative devices which have reduced production energy
and disposal expenses (“green electronics”).

Within this area, renewable polymeric materials derived from nature have gained
great popularity due to their excellent processability, mechanical properties, and recycling
efficiency [6–9]. Among them, sodium alginate (SA), a natural biopolymer extracted
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from marine algae, presents important characteristics of non-toxicity, biocompatibility, and
biodegradability [10]. Due to its transparency, good protonic conductivity, and film-forming
adaptability, SA is expected to find useful applications in green electronic devices [11,12].
However, only a very few studies have been reported in the scientific literature on this topic.
Therefore, a detailed investigation of the possibility of integrating SA films into electronic
circuitry is necessary, starting from the realization of highly conductive contacts [13]. To
this scope, a crucial aspect regards the process of metallization and, as a consequence, the
interface properties of the metallic layers with the organic compounds [14].

Different techniques can be adopted to obtain a metallization, such as electrochemical
or chemical vapor deposition, sputtering or thermal evaporation, and finally non-covalent
functionalization, in which the assembly of the pristine species is mildly carried out in
water at room temperature [15]. Moreover, the choice of a metal in connection with a
polymer has a strong influence on the physical and chemical final properties of the con-
ductive films [16]. At present, electrochemical deposition is one of the most interesting
preparation methods and the use of silver nanoparticles or nanowires in nanopapers based
on nanocellulose represents one of the most promising technologies [8,11,12]. However,
electrochemical deposition is not suitable for the realization of ultrathin (<10 nm) transpar-
ent and conductive layers, requested, for example, in the case of optoelectronic applications.
In addition, the fabrication costs of pure nanopapers are relatively high. Therefore, the
development of alternative solutions is a relevant topic in green electronics.

A different approach, consisting of sputtering gold onto SA free-standing substrates,
has been recently proposed by some of the authors. Herein, a detailed study of the electric
transport properties of these bilayers was performed in the temperature range from 3
to 300 K. SA is inexpensive and can be easily manipulated. Furthermore, the proposed
metallization process allows one to deposit ultrathin gold layers, maintaining a smooth
morphology, high mechanical stability, and good transparency [3,14]. Despite the large
amount of structural, mechanical, and optical characterizations reported in the literature
on alginate compounds [3,14,17,18], few studies of their electric transport properties, if
any at all, are presently known. Temperature-dependent transport measurements can
provide useful information on the physics of the electrical conduction mechanisms, as
demonstrated in the case of superconducting and magnetic materials [19–22], granular
aluminum oxide thin films [23–25], and oxide interfaces [26–28]. The results obtained can
be very useful from a technological point of view. In particular, they show the feasibility
of realizing organic conducting devices that can also operate in a cryogenic environment,
using natural polymer films and metallic layers of a nanometric thickness.

2. Experimental Results and Discussion

A detailed DC electric transport investigation was performed from 3 to 300 K on
four SA films, covered with thin sputtered gold (Au) layers of different thicknesses. As
shown in Figure 1a (left panel), all the current–voltage (I-V) curves were linear; that
is, all the samples had an ohmic behavior, regardless of both the Au thickness and the
temperature at which the measurements were performed: 300 K (red stars) or 3 K (blue
circles). Conversely, plotting resistance versus temperature (R-T), a strong dependence of
R on the Au thickness can be found, as displayed in Figure 1b (right panel). In particular, it
can be noticed that R increased with increasing T, thus exhibiting a “metallic” behavior
for thicknesses of 24 and 6 nm (first and second graphs from the top). A less pronounced
“metallic” behavior can be observed for a thickness of 5 nm (third graph), while an increase
in R upon lowering T was found for a thickness of 4.5 nm (fourth graph). From the point
of view of the electrical transport, this last case is the most useful for the comprehension of
the mechanisms involved in the intrinsic electrical response of the SA free-standing foils
coated with nanometric films of sputtered Au.
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Figure 1. DC electrical characterization of four sodium–alginate (SA) samples sputtered with Au, with a thickness ranging
from 4.5 to 24 nm. (a) Current–voltage (I-V) curves. Red stars data refer to 300 K, while blue circles refer to 3 K. (b)
Resistance versus temperature (R-T) curves are reported for the same samples. The curves, acquired in cooling (blue circles)
and warming (red stars) modes, did not show any significant hysteresis.

The effect related to the Au thickness was more evident if the R values are plotted,
normalizing the data to the room temperature resistance R300K. The results are visible in
Figure 2, where the T dependencies of the ratio R/R300K are shown, evidencing a clear
reduction in the metallicity of the samples upon decreasing the Au thickness. These
experimental data can be analyzed with a power-law expression [29]:

R(T)
R300K

= R0 + R1Tn, (1)

where R0 is the low-temperature residual normalized resistance, R1 is a multiplicative factor,
and n is an exponent, which depends on the nature of the carrier interactions considered. The
best-fit procedure using Equation (1), yellow lines in the lower panel of Figure 2, yielded the
following values: n = 1.8 ± 0.2 for an Au thickness of 24 nm, n = 1.3 ± 0.1 for 6 nm, and
n = 1.2 ± 0.1 for 5 nm. This analysis indicates that the thickest film is characterized by a
standard metallic Fermi-liquid behavior, corresponding to n = 2 [29–31]. Charged impurity
resistance contributions become dominant for thinner Au films (5 and 6 nm), corresponding
to n = 1 [32,33]. Similar results have been observed in the case of thin epitaxial Au films
deposited on sapphire [34] and also for ultrathin Au films grown on other transparent
polymers [35]. A strong increase in the resistivity values was also correlated to the reduction
in the metal thickness, as shown in Figure 2. This behavior can be ascribed to an enhanced
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surface scattering of the conduction electrons and structural defects, additionally built-in
during the initial stages of the sputtering process [34]. The presence of these intrinsic
defects and dislocations contributes to the formation of electrically isolated clusters in the
thinner films, while thicker samples are highly structured [35]. The possible consequence
of these morphological properties, characteristic of the Au growth, could be the occurrence
of a crossover from a typical Fermi-liquid behavior to a less “metallic” one upon decreasing
the Au thickness. This corresponds to the experimental results shown in Figure 2 and to
the outcome of the modeling.
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Figure 2. Temperature dependence of the ratio R/R300K , where R300K is the room temperature
resistance value. From an Au layer of 24 nm (black squares) down to 6 nm (red circles) and 5 nm
(green stars), the behavior became increasingly less metallic (lower panel). A change in the electrical
transport mechanism is clearly visible for the thinnest Au film (blue diamonds), characterized by a
strong non-metallic behavior (upper panel).

A noticeable change in the R-T dependence was, instead, found for an Au thickness of
4.5 nm. As evidenced in the upper panel of Figure 2, the metallic behavior was not observed
anymore (blue diamonds), in agreement with the experimental observations reported for
ultrathin Au nanostructures sputtered on glass [36]. For those structures, upon lowering
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the layer thickness, it has been observed a lattice expansion, which is manifested in an
increase in the lattice parameter and, consequently, a decrease in the metal density [37–40].

The low-temperature regime, below 70 K, was characterized by a net R increase upon
decreasing T. To understand this behavior, the disordered nature of the random resistor
network constituting the structure of the ultrathin Au film has to be considered. In this
framework, a suitable description of the electrical transport mechanisms is given by the
fluctuation-induced tunneling (FIT) model [41–43]. According to this model, the electrical
conduction is dominated by electron transfer between large conducting segments rather
than by hopping between localized sites. As a consequence, the electrons tend to tunnel
between conducting regions at the points of their closest contact, where the relevant tunnel
junctions are usually small in size and, therefore, are exposed to large thermally activated
voltage fluctuations [41]. Following this model, the R-T dependence can be expressed as:

R(T) = RFITexp
[

T1

T + T0

]
, (2)

where RFIT is a preexponential factor, T0 and T1 are two characteristic temperatures of
the system investigated. The applicability of this model has been shown, for example, in
the case of magnetic materials [44–46] and of carbon nanotube composites [47–49]. The
solid green line, shown in Figure 3, was obtained from Equation (2) with the best fitting
value of T0 = (90 ± 7) K. This value gives a direct estimation of the temperature below
which tunneling between the conducting regions becomes significant. From the best fit
procedure, a value of T1 = (1010 ± 70) K was obtained and, being related to the energetic
scale of the formed insulating barriers, is in agreement with what already found in the case
of disordered systems [41].
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Figure 3. Modeling of the DC experimental data obtained for the thinnest Au film (4.5 nm). The R-T
dependence (black dots) could be reproduced with the fluctuation-induced tunneling model below
70 K (green curve, best fit using Equation (2)) and with a phenomenological model that assumes an
expansion of the conductive region from 300 to 200 K (red curve, best fit using Equation (4)).

Above 70 K, instead, the curve substantially flattened out with some oscillations.
This region was then followed by a reduction in R for increasing T. To explain this
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behavior, a phenomenological model was considered that assesses an expansion of the
conductive region upon decreasing T. This expansion, which would be anomalous for a
homogeneous material, can, however, be possible if one considers that the conductive layer
can be described as a dense collection of clusters embedded in the biopolymer film, which
contains an unknown amount of water molecules.

The average distance between the clusters can be expressed in terms of a general
exponential function as:

a(T) = c0 − c1exp[c2(T − T?)]. (3)

Here, c0, c1, and c2 are free fitting parameters, and T? is fixed to the value of 273 K.
The contribution to the total R can be consequently ascribed to a rectangular tunneling
barrier with a width a(T). Then, it is straightforward to derive the following expression for
R versus T:

R(T) = RM + REXPexp[a(T)], (4)

where RM is a high-temperature constant resistance term, probably due to the conducting
paths originated by the ohmic Au connections, and REXP is a preexponential factor. The
best fit procedure with Equation (4) gave an appreciable agreement, and is also statistically
consistent, with the experimental data in the region from 300 down to 70 K. This is shown
in Figure 3 with the solid red line.

Overall, the investigation of a wide range of temperature values is a decisive approach
to describe the electric transport processes at work in Au sputtered SA structures appro-
priately. A more detailed understanding of the effect due to the polymeric matrix on the
conduction could be achieved through the realization and the analysis of new samples
prepared under different conditions. This will be the object of future investigations.

3. Materials and Methods

Alginic Acid Sodium Salt (SA) was purchased from Sigma–Aldrich (Milano, Italy)
and solubilized in ultrapure water at room temperature. A quantity of 32 mL of a solution
at 2% wt. concentration was cast in a 100 mm polystyrene Petri dish. After drying at
room temperature for several days, transparent free-standing films were obtained. A thin
Au layer was sputtered onto the SA films using an MRC 8622 RF system (Kenosistec s.r.l,
Binasco, Milano, Italy). The deposition process was performed at low power (20 W) to
avoid unwanted substrate heating and to have a finer control of the thickness. The complex
morphology of these films made it difficult to evaluate the value of their thickness directly.
A calibration was then performed using as reference a flat piece of silicon wafer placed in
the chamber beside the SA film when depositing 24 nm of Au. The nominal deposition
rate was calculated to be 0.05 nm s−1.

The electrical properties of the samples were characterized using a dedicated setup. The
temperature control was obtained with a closed-cycle refrigerator, mod. CSW-71 compressor and
RDK-408D cold-head (Sumitomo (SHI) Cryogenics of Europe GmbH, Darmstadt, Germany),
capable of reaching a base temperature of 3 K and with a 1 W refrigeration power capability
at 4.2 K (see Figure 4a). Similar to what was described in [50–52], a low-noise electronic bias
and readout circuitry was used. The readout electronics were controlled using a dedicated
computer equipped with high-resolution digital to analog and analog to digital interfaces
through a PXI crate (National Instruments, Austin, TX, USA) and programmed using the
LabVIEW environment.
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Figure 4. Experimental setup components. (a) Photograph of the closed-cycle refrigerator used
for the electrical measurements as a function of the temperature. (b) Photograph of the sample
holder used.

The electrical connections were made by contacting the sample with two flexible
printed circuits (flexPCB), each made by two Au-covered copper strips embedded in
Kapton placed at a distance of about 5 mm, to realize a four contacts configuration, see
Figure 4b. The sample and flexPCB were sandwiched between two Teflon-covered Al
plates and kept in position using plastic screws.

4. Conclusions

Starting from a natural biopolymer foil obtained from marine algae sodium–alginate,
conducting films were prepared by sputtering thin gold nanolayers with a thickness
variable from 4.5 to 24 nm. The electric transport properties of the samples realized were
then investigated in the temperature range from 3 to 300 K.

A “metallic” behavior was observed from the temperature dependence of the film
resistance for a gold thickness above 5 nm. The conducting film could also be maintained
quasi-transparent, keeping the gold thickness below 6 nm.

Below 5 nm, instead, the temperature dependence of the electrical conduction was
quite different. In a temperature region below 70 K, the electrical transport can be well
explained in terms of fluctuation-induced tunneling through gold clusters embedded in
the sodium–alginate film. Above 70 K, in particular, in the range from 200 to 300 K, a
phenomenological model can be used to explain the experimental findings. Such a model
assumes an increase in the average distance between the gold clusters upon decreasing
the temperature.

The information extracted from the electrical analysis herein reported, correlated
with other characterizations, can be very useful to investigate this type of compound. In
addition, the absence of toxic components and the intrinsic biodegradability of sodium–
alginate make the system investigated a real example of green technology and a very
promising candidate to be employed in flexible green optoelectronics.
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