We consider mean-field models for data clustering problems starting from a generalization of the bounded confidence model for opinion dynamics. The microscopic model includes information on the position as well as on additional features of the particles in order to develop specific clustering effects. The corresponding meanfield limit is derived and properties of the model are investigated analytically. In particular, the meanfield formulation allows the use of a random subsets algorithm for efficient computations of the clusters. Applications to shape detection and image segmentation on standard test images are presented and discussed. © American Institute of Mathematical Sciences.

Mean field models for large data-clustering problems

Herty, M.
Primo
;
Pareschi, L.
Secondo
;
Visconti, G.
Ultimo
2020

Abstract

We consider mean-field models for data clustering problems starting from a generalization of the bounded confidence model for opinion dynamics. The microscopic model includes information on the position as well as on additional features of the particles in order to develop specific clustering effects. The corresponding meanfield limit is derived and properties of the model are investigated analytically. In particular, the meanfield formulation allows the use of a random subsets algorithm for efficient computations of the clusters. Applications to shape detection and image segmentation on standard test images are presented and discussed. © American Institute of Mathematical Sciences.
2020
Herty, M.; Pareschi, L.; Visconti, G.
File in questo prodotto:
File Dimensione Formato  
1556-1801_2020_3_463.pdf

solo gestori archivio

Descrizione: versione editoriale
Tipologia: Full text (versione editoriale)
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 6.11 MB
Formato Adobe PDF
6.11 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
1907.03585preprint.pareschi2020.pdf

accesso aperto

Descrizione: versione preprint
Tipologia: Pre-print
Licenza: PUBBLICO - Pubblico con Copyright
Dimensione 6.26 MB
Formato Adobe PDF
6.26 MB Adobe PDF Visualizza/Apri

I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/2437737
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 6
social impact